LMP 1210H: Basic Principles of Machine
Learning in Biomedical Research

Bo Wang
Al Lead Scientist, PMCC, UHN
CIFAR Al Chair, Vector Institute
Assistant Professor, University of Toronto

Administrative Stuff

1. Homework 2 is out! Due Feb 20!
Reminder : lots of work! Start early!

2. Project Handout is out!

e Proposal: Due Feb 21, 11:59pm
e Presentation: Due March 28 or April 4, in-class

e Final Report: Due April 10, 11:59pm

More on the Final Project

1. Groupsize:2vs3
Trade-off between bonus and workload

2. Project proposal

Proposal: The project proposal is limited to two pages. It should roughly have the following
sections:

1/4 page introduction

1/2 page related works

1/2 page method / algorithm

1/4 page abstract and reference

The point of the proposal is mainly for us to give you feedback and formulate a plan for the
final report. The proposal will not be graded. We will set up project consultation appointments
after we have collected all the project proposals. You will submit your proposal report through
Quercus. Note: Groups without proposal submissions cannot proceed with the final
presentations and reports!

More on the Final Project

3. Project presentation

The slide presentation should be short, maximum 10 min. Presentations that are longer will be
penalized, with a hard cutoff after 11 min. A good rule-of-thumb is one slide per minute (excluding
title and reference slides). Effective presentations make use of large figures and minimal text.

4. Peer Review

e Participation [10%] (We are counting on you!) We will adopt a peer-review system
through Quercus in which students will participate in reviewing the other classmates’ reports.
Reports will be made anonymously. We expect each student to review at least 2 reports. The
participation score will be given based on the quality of the reviews by each student. You
may find this guide helpful regarding how to write a good review. For participating in the
review process, you will be awarded 10%.

Recap: Linear Classification and Gradient Descent

. » »
1.0 o) -
2 l I 4
g > A
5 -0
-1 | v
2 1 | |

@ Advantages: Easy to understand and implement; Widely-adopted;

Classification

Binary linear classification

o classification: predict a discrete-valued target
@ binary: predict a binary target t € {0,1}

e Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

@ linear: model is a linear function of x, thresholded at zero:

z=w'x+b

output — 1. ifz>0
MRS 6 Fz=i

Logistic Regression

@ We can’t optimize classification accuracy directly with gradient
descent because it's discontinuous.

@ Instead, we typically define a continuous surrogate loss function which
is easier to optimize. Logistic regression is a canonical example of
this, in the context of classification.

@ The model outputs a continuous value y € [0, 1], which you can think
of as the probability of the example being positive.

Logistic Regression

@ There's obviously no reason to predict values outside [0, 1]. Let's
squash y into this interval.

1.0

@ The logistic function is a kind of sigmoidal, or 08

S-shaped, function: oo
1 0:2
O'(Z) - 1 + e—Z oo

@ A linear model with a logistic nonlinearity is known as log-linear:

z=w x4+ b

y =0(2)

@ Used in this way, o is called an activation function, and z is called the
logit.

Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

e Being 99% confident of the wrong answer is much worse than being
90% confident of the wrong answer. Cross-entropy loss captures this
intuition:

— | it =<1
ﬁCE(y,t)={ ogy 1

—log(l—y) ift=0
= —tlogy — (1 —t)log(1—y)

t=1 t=0

cross-entropy loss

Logistic Regression

e Logistic regression combines the logistic activation function with
cross-entropy loss.

3.0 15 =
2.5
z=w'x+b 2.0
y =0(2) 815
1 1.0
1 + e~2 05
Log = —tlogy — (1 —t)log(1—y) |

@ Interestingly, the loss asymptotes to a linear function of the logit z.

@ Full derivation in the readings.

Linear Regression v.s. Logistic Regression

mostly used for continuous mostly used for binary

regression. classification.

Loss function: square error Loss function: cross entropy
Optimization: gradient Optimization: gradient
descent or closed form descent

Output is linear in inputs Output is not linear in inputs

Limits of Linear Classification

@ Single neurons (linear classifiers) are very limited in expressive power.
@ XOR is a classic example of a function that's not linearly separable.

A
Zr2

@ There's an elegant proof using convexity.

Limits of Linear Classification

Convex Sets

N

@ A set § is convex if any line segment connecting points in S lies
entirely within §. Mathematically,

X1,X2 €S = Mi1+(1-A)x2€S for0< A< 1.

@ A simple inductive argument shows that for x1,...,xy € S, weighted
averages, or convex combinations, lie within the set:

AX1+ -+ AIyxy €S for A\; >0, \i+--- Ay =1.

Limits of Linear Classification

Showing that XOR is not linearly separable

@ Half-spaces are obviously convex.

@ Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

@ Similarly, the red line segment must line within the negative half-space.

@ But the intersection can't lie in both half-spaces. Contradiction!

Limits of Linear Classification

A more troubling example

w110 pattern A s Tmmrrrrr) pattern B

Corm mm w10 pattern A CrrmsirTmmrrrr) pattern B

e e Pattern A o eems pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

Translation Invariance

Limits of Linear Classification

A more troubling example

w1170 pattern A s rrrro pattern B

rrm rmm w1 pattern A CorrmsTrwmrrr) pattern B

T mm Pattern A I mmo pPattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

@ Suppose there's a feasible solution. The average of all translations of A is the
vector (0.25,0.25,...,0.25). Therefore, this point must be classified as A.

@ Similarly, the average of all translations of B is also (0.25,0.25,...,0.25).
Therefore, it must be classified as B. Contradiction!

Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

X1
P(x) = | x
X1 X2

X1 xo | ¢1(x) P2(x) P3(x) | t
0 O 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)

@ Not a general solution: it can be hard to pick good basis functions.
Instead, we'll use neural nets to learn nonlinear hypotheses directly.

After the break Multi-Layer Perceptrons

Source: https://www.youtube.com/watch?v=vyNkAuX290U

Jimmy Ba and Bo Wang CSC413/2516 Lecture 2: Multilayer Percepti

A brief history

Social excitement
and concern

Success of
AlphaGo,
Libratus, etc...

Boom 1 Boom 2 Boom 3

: : Deep Learning
“GOFAI" “Expert Systems” “Machine Learning”

Autonomous
Vehicles

Winter 1 Winter 2

Autonomous
Weapons

knowledge

engineering
DENDRAL, MYCIN

AAAl Jsa) PROLOG, Lisp

FGCS, SCI, MCC, Alvey, ESPRIT
Stanford McCarthy, Minsky Feigenbaum, Brooks
| | |

1960s 19709 1980s 1990s 2000s 010s

heuristic
search
General Problem Solver
Samuels’ Checkers Program
MIT,CMU, Simon, Newell,

Perceptron Backprop LeNet AlexNet
1958 1974 1998 2012

The Biological Motivation

more neurons

IMpYisos camed higher intelligence?

toward cell body

' branches
dendrites (VY of axon

nucleus

/ axon

terminals

impulses carried

away from cell body
cell body

Some fun facts :

1 million x

v

100 billion neurons 100,000 neurons

The Biological Motivation

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cellbedy——

—_—

Impulses carried away

from cell bod
y ZL(wo
o S e ey 30 synapse

WoTo

—».
axon from a neuron

cell body

¥ (Zw;zg = b)
Zwimi +b :

output axon

activation
function

Multilayer Perceptrons

@ We can connect lots of
units together into a
directed acyclic graph.

@ This gives a feed-forward
neural network. That's
in contrast to recurrent
neural networks, which
can have cycles. (We'll
talk about those later.)

o Typically, units are
grouped together into
layers.

depth

a hidden

unit

| aconnection

an output
uni‘t

output layer

second hidden layer

first hidden layer

input layer

an input
unit

Basic Components of MLP

What are we trying to learn? Weights.

e The value of each synaptic connection between neurons - weights.
e Let us denote the weight matrix of layer k as 8% and the weight connecting
the i-th neuron in layer k to the j-th neuron is layer k+1 as Gg-(k)

o

i
X
a

output layer

Vo
b
0§

input layer 3
hidden layer 1 hidden layer 2 941

Basic Components of MLP

Forward Propagation
e Goal: Given input vector x, we want to yield a mapping f (x).

e Propagate x through first set of weights 6.
e Denote pre-activation values of layer i as h®.

Ex. Calculate the pre-activation value of h .
h™ =50 (mx
J i ij i

@ =90 (1 (1) (1)
h1 911 X+ 921 X, + 931 X3

input layer

hidden layer 1 hidden layer 2

Basic Components of MLP

Example :What is the value of the green and purple neuron for this set of
inputs and weights?

O
(D
P O

Basic Components of MLP

Example :What is the value of the green and purple neuron for this set of
inputs and weights?
Pre-activation

@
@ O =1(1)+3(2)=7

, @ O =1(2) +3(-1) = -1

Basic Components of MLP

Activation Functions

» Successive weight matrices multiplied by the input x would just be a linear
transformation.

* Non-linear activation functions allow us to learn non-linearly separable

mappings.
* Most data is non-linearly separable.

* Activation functions also allow us to calculate gradients used for optimizing
the weight values.

* Let us denote the activation function as a(x) : R — R.

y linear y non-linear y inseparable
A A A
B + +iﬂ++
o +
m Tgo iy o
o oo + .
o 0o g, gflo +h LT ag
Og_B fopiyo oo+t ' 8%4a
oD Op g oo o ++ +8o 0
Og o Og nd o,y %olo
9 og g0 +%o0g'; to
o o 4+gyBog 0 op
Og Bog oA+ o+P Ba gy
Ogg o .agd 000 _p
ol og
oo o o /l:\|:|+E'|:I|:|D og
”nunnﬂuc‘?\ﬂ:a“ Oopg ©
o]
oog @ oo
» X » X » X

Basic Components of MLP

Some activation functions:

Linear Hard Threshold Logistic
1 itz>0 1
y=1z YZ10 ifz<o Y=1te=

Basic Components of MLP

Some activation functions:

Ve

Rectified Linear Unit
(ReLU)
ef—e’” y =logl+ €?

= — = max(0, z
IS o y (0,2)

Hyperbolic Tangent
(tanh)

Soft ReLU

Basic Components of MLP

Activation Functions Sigmoid

a(x) =[Sigmoid(x) = 1/(1+e™)

a'(x) = e*/(1+e>)?

a'(x) = a(x)(1-a(x))

Basic Components of MLP

Activation Functions Sigmoid

Problems:

e Vanishing Gradients: The gradients approach zero resulting in almost no
update to the weights.
o Sigmoid squishes values to (0, 1).
e Gradients of larger and smaller x values approach zero.
o No updates to those weights.
e Not used as the “go-to” activation function anymore.
o Only used for cases where values should be scaled to (0, 1).

Basic Components of MLP

Activation Functions Rectified Linear Units (ReLU)
a(x) = ReLU(x) = max{0, x}

ax)=1_,

1 - 1
0.5 0.5
1 =]
5 g i
*—E 0] é 0
G <
-0.5 -0.5
-1 ~ -1 -
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Input Input

Basic Components of MLP

Activation Functions Rectified Linear Units (RelLU)

Pros

e Works well empirically.
o More discriminability power as values no longer compressed in (0, 1).
o Go-to activation function for almost all tasks.

e Fixes vanishing gradient issue sigmoid had.
Problems
e Dying ReLU problem: only output O for all input.

o No activation = no classification.
o The gradient is zero too so mathematically cannot update weights.

Basic Components of MLP

Forward Propagation Activating Features

e Apply an activation function a(x) on each hj(’") :
o Analogous to a neuron firing.
o Denote the activation value of the j-th neuron in layer m as aj(m)

e Intuition: Whether a neuron fires or not and the magnitude of its activation
value is very useful in piecing together useful features for accomplishing the
task.

o Extension: unuseful features should be zeroed out by the activation function.

h(m =5 @ (mix
J i i
a(hj(”'))= a(z, Gij(m")x.

(m)= (m-1)
a, a(z, 9,-,- x)

Basic Components of MLP

Example: What is the value of the green and purple neuron for this set of
inputs and weights pre-activation? Post-activation?

O
@
o @

Basic Components of MLP

Example: What is the value of the green and purple neuron for this set of
inputs and weights pre-activation? Post-activation?

Pre-activation

@
@ O =1(1)+3(2)=7

, : O =12)+3(-1)=-1
©

Basic Components of MLP

Example: What is the value of the green and purple neuron for this set of
inputs and weights pre-activation? Post-activation?

Pre-activation Post-activation
(ReLU)

Recall: ReLU(x) = max{0, x}

Basic Components of MLP

Loss Functions Measuring Error

* Metric of how wrong the model performed.

» Ground truth label is given in supervised learning problems.

» Compares model output with the ground truth label so that /learning can occur.

» Goal of machine learning: minimize the loss function.

Basic Components of MLP

Loss Functions Mean Squared Error
» Measure the variance of model output against target.

« f;is ground truth label and y; is predicted label.

JO)= Ly, - 1)

Basic Components of MLP

Loss Functions Cross Entropy Loss

* Measures the error of a model given the output is between [0, 1].
 Stronger gradients as loss diverges as the predicted probability diverges from
the actual label.

* f;is ground truth label {0, 1}, and y; is predicted probability [0,1].

J(O)= — Ztilog(yi) + (1 —¢t)log(1 —y,)

0 Log Loss when true label = 1

8l

6|

log loss

. 1
0.0 0.2 0.4 0.6 0.8 1.0
predicted probability

Multilayer Perceptrons

@ Each layer connects N input units to M output units.

@ In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We'll consider other layer types later.

@ Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

@ Recall from softmax regression: this means we 4 4 R
need an M x N weight matrix. \ / ‘ \ f / t

@ The output units are a function of the input
units:

y = (x) = & (Wx +b)

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!

Multilayer Perceptrons

@ Each layer computes a function, so the network
computes a composition of functions:

h(1) — f(l)(x)
h(? = F@)(h())

y = f(L)(h(L—l))
@ Or more simply:

@ Neural nets provide modularity: we can implement
each layer's computations as a black box.

Feature Learning

@ Neural nets can be viewed as a way of learning features:

J
linear regressor_______ 1
/ clasifier
h® | =9(x)
h
i
X

Feature Learning

@ Neural nets can be viewed as a way of learning features:

@ The goal:

linear regressor_____ %

/ clasifier

- 4+
9 + -_
b—— -
g
+++
< T

Y
h? | =v(x)
h
A
X
P2(x) + -l_-|_+
) - *

Expressive Power

@ We've seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?

@ Any sequence of linear layers can be equivalently represented with a
single linear layer.

y = WOWRWwWQ
Y

@ Deep linear networks are no more expressive than linear regression!
o Linear layers do have their uses — stay tuned!

https://arxiv.org/pdf/1610.00291.pdf

Expressive Power

e Multilayer feed-forward neural nets with nonlinear activation functions
are universal approximators: they can approximate any function
arbitrarily well.

@ This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

e Even though RelLU is “almost” linear, it's nonlinear enough!

Expressive Power

Universality for binary inputs and targets:
@ Hard threshold hidden units, linear output
o Strategy: 2P hidden units, each of which responds to one particular
input configuration

I WD) T3 t

@ Only requires one hidden layer, though it needs to be extremely wide!

Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

1

! ‘@ 1

Multilayer Perceptrons

Exercise: Could you come up with another set of weights to compute
XOR?

Expressive Power

@ Limits of universality

e You may need to represent an exponentially large network.
e If you can learn any function, you'll just overfit.
e Really, we desire a compact representation!

Expressive Power

@ Limits of universality
e You may need to represent an exponentially large network.
e If you can learn any function, you'll just overfit.
@ Really, we desire a compact representation!

@ We've derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

o This suggests you might be able to learn compact representations of
some complicated functions

After the break

After the break: Backpropagation

After the break Back-Propagation

Source: https://www.youtube.com/watch?v=Suevg-kZdlw

Overview

@ We've seen that multilayer neural networks are powerful. But how can
we actually learn them?

@ Backpropagation is the central algorithm in this course.

e It's is an algorithm for computing gradients.
o Really it's an instance of reverse mode automatic differentiation,
which is much more broadly applicable than just neural nets.

@ Thisis “just” a clever and efficient use of the Chain Rule for derivatives.

@ We'll see how to implement an automatic differentiation system next
week.

Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

@ Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

@ Conceptually, not any different from what we've seen so far — just higher
dimensional and harder to visualize!

@ We want to compute the cost gradient d.7 /dw, which is the vector of
partial derivatives.

e This is the average of dL/dw over all the training examples, so in this
lecture we focus on computing d£/dw.

Recap : Univariate Chain Rule

@ We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d df dx
d—tf(x(t)) = A

Recap: Computation Graph

@ A computational graph is a directed graph where the nodes
correspond to operations or variables.

@ Variables can feed their value into operations, and operations can
feed their output into other operations. This way, every node in the
graph defines a function of the variables.

@ For example : we want to plot the operation z = x + y, then

Recap: Computation Graph

@ A computational graph is a directed graph where the nodes
correspond to operations or variables.

@ Variables can feed their value into operations, and operations can
feed their output into other operations. This way, every node in the
graph defines a function of the variables.

@ Another example : we want to plot the operation f = (x+ y) * b, then

'y
v

A simple example

f(x,y,2)=(x+y)*z
g=x+y,f=qgx*xz

A simple example : Forward Pass

f(x,y,2)=(x+y)*z

g=x+y,f=q%*z &
eg,x=—-1y=2z=3
then,g=1,f = -3 B}
of of oOf Eg

Want, 2=, L 90
an’ax’(‘)y’az

A simple example : Backward Pass

f(x.y,2) = (x+y)* 2 &
g=x+y,f=qg%*z ,
eg.x=-1y=2,z=3 :
of .

baseline : — =1
aseline : == B

A simple example : Backward Pass

f(x,y,2)=(x+y)*z
g=x+y;f=qxz

aigiei=layyre 2,2 =3 =

of -

b / :—:1 y

aseline of [

of Of Of '3

9z~ afoz 97! =

of Of Of

= =7 = 3

dq 9fdq

A simple example : Backward Pass

fix,y,2) =(x+y)*z
g=x+y,f=qxz

egxi=r=l.y=2,2=3

of 0fdq -

of Of dg

3y, = a9y = (90 =-3

A simple example : Backward Pass

A quick summary:

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

\

A simple example : Backward Pass

A quick summary:

“local gradient”

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

\

A simple example : Backward Pass

A quick summary:

0z
Ox

S|

“local gradient”

\

oL
0z

gradients

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

A simple example : Backward Pass

A quick summary:

“local gradient”
X O 0z
3

\

gz AL
Oy 0z
gradients

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

A simple example : Backward Pass

A quick summary:

“local gradient”
=y oy 0z
% [o

2@

oL
0z

gradients

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University

A more complex example: logistic least squares model

Recall: Univariate logistic least squares model

zZ=wx-+b
y =o0o(z2)
1 2
E—zw t)

Let's compute the loss derivatives.

Univariate Chain Rule

How you would have done it in calculus class

= 1(()'(wx FB)—)°

BC 8
ow Ow [2 _1 2
= Ed—(a(wx—i-b)—t)z
= (o(wx + b) — t)g((r(wx + b) —t)
= (o(wx + b) — t)—(a(wx + b) —t)

) = (o(wx+ b) —)" (wx + b) - (wx + b)
= (o(wx + b) = t)o’(wx + b) = (wx + b) (o(wx + b) — t)o’ (wx + b)
= (o-(wx + b) - t)or/(wx -+ b)x

What are the disadvantages of this approach?

Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Compute Loss
—_—>

t
4 b
W—=2 >y>:L

g

Compute Derivatives
<

A more structured way to do it

Compute Loss
_—

P £

e

W—B2—Y— [

b
Compute Derivatives
-
Computing the derivatives:
Computing the loss: ar
z=wx+b dy
= dt . 4L
=t T3,
L=y -1y oL _de
ow dz
oL = dL

Univariate Chain Rule

A slightly more convenient notation:

@ Use y to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

@ This is not a standard notation, but | couldn’t find another one that | liked.

Computing the loss: Computing the derivatives:

z=wx+b J=y—t

y:U(Z) 2:70/(2)
1 -

CZz(y—t)z e

ol S
[l
NI

—
Backpropagation

Full backpropagation algorithm:
Let wi,..., vy be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).
T EBOE = 1; pu N

forward pass _
Compute v; as a function of Pa(v;)

T ’UN=1
Fori=N-1,...,1

backward pass

Vi = ZjECh(’U,') Uj ov;

Jimmy Ba and Bo Wang CSC413/2516 Lecture 2: Multilayer Percepti

Vector Form

MLP example in vectorized form:

W({i w® 1’\‘ Backward pass:
> o N | e=d
/ y=L(y-t)
b(l) b(Z) W(2) - yhT
Forward pass: h2) — y
z = Wx + p®) h=w®@Ty
h=o0(2) Z=ho 0'/(2)
y =W®h + b WO = zxT
1 Y
£=5lt—yl hEi=2

Jimmy Ba and Bo Wang CSC413/2516 Lecture 2: Multilayer Percepti

Closing Thoughts

@ Backprop is used to train the overwhelming majority of neural nets today.

@ Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally implausible.

@ No evidence for biological signals analogous to error derivatives.

e All the biologically plausible alternatives we know about learn much
more slowly (on computers).

o So how on earth does the brain learn?

Closing Thoughts

The psychological profiling [of a programmer]| is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the
small and to see something in the large.

— Don Knuth

@ By now, we've seen three different ways of looking at gradients:

e Geometric: visualization of gradient in weight space
e Algebraic: mechanics of computing the derivatives
e Implementational: efficient implementation on the computer

@ When thinking about neural nets, it's important to be able to shift
between these different perspectives!

MLP for Molecular Data Analysis

Bioinformatics

Issues Advance articles Submit v Purchase Alerts About v All Bioinformatics

Optimized multilayer perceptrons for molecular
classification and diagnosis using genomic data @

Zuyi Wang, Yue Wang %, Jianhua Xuan, Yibin Dong, Marina Bakay, Yuanjian Feng,
Robert Clarke, Eric P. Hoffman Author Notes

Bioinformatics

Bioinformatics, Volume 22, Issue 6, 15 March 2006, Pages 755-761,
Volume 22, Issue 6 https://doi.org/10.1093/bioinformatics/btk036
15 March 2006 Published: 10 January 2006 Article history v

. PDF BE SplitView ¢¢ Cite A Permissions «& Share v
Article Contents

Meolecular Data
Analysis

LIMIMA vSSWILP for genomic data ?

Class l:ﬂ Scussio

What are in the next lecture?

1. Ensemble methods for classification

2. Tutorials on implementing supervised learning
algorithms using sklearn!

