LMP 1210H: Basic Principles of Machine
Learning in Biomedical Research

Bo Wang
Al Lead Scientist, PMCC, UHN
CIFAR Al Chair, Vector Institute
Assistant Professor, University of Toronto

Administrative Stuff

1. Marks of Homework 1 is released!
2. Homework 3 : March 19

3. Schedules of in-class presentations will be
released soon.

4. Interesting talks next coming weeks!

More on the participation marks

In-class participation (15%)

Q&A during lectures

Unsupervised Learning vs Supervised Learning

Supervised Learning Unsupervised Learning

classification or

et clustering
categorization

Continuous Discrete

dimensionality

regression ,
J reduction

Why dimension reduction?

High-dimensional data is everywhere!

* High-Dimensions = Lot of Features

Document classification
Features per document =

thousands of words/unigrams

Source: Nina Balcan

Why dimension reduction?

High-dimensional data is everywhere!

* High-Dimensions = Lot of Features

MEG Brain Imaging
120 locations x 500 time points
X 20 objects

Source: Nina Balcan

Classifier performance

Why dimension reduction?

'
'
)
'
)
L] ’ L) L} I 1 L) L] L] ' L] T L] A l L] L) L] L] I L] L] L] L] l
)
)

Dimensionality (number of features)

Curse of Dimensionality

Why dimension reduction?

Useful for:
* Visualization

* More efficient use of resources
(e.g., time, memory, communication)

* Statistical: fewer dimensions = better generalization
* Noise removal (improving data quality)

* Further processing by machine learning algorithms

PCA: Principle Component Analysis

What is PCA: Unsupervised technique for extracting variance
structure from high dimensional datasets.

Nyt

* PCA is an orthogonal projection or transformation of the data into a
(possibly lower dimensional) subspace so that the variance of the
projected data is maximized.

Source: Nina Balcan

PCA: Principle Component Analysis

If we rotate data, again only
one coordinate is more
important.

Intrinsically lower dimensional
than the dimension of the
ambient space.

Only one relevant feature Both features are relevant

Question: Can we transform the features so that we only need to preserve
one latent feature?

Source: Nina Balcan

PCA: Principle Component Analysis

In case where data lies on or near a low d-dimensional linear subspace,
axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and can be
obtained by using classic matrix computation tools (Eigen or Singular Value
Decomposition).

Source: Nina Balcan

Example: 2D Gaussian

6 i] i i | i]

Source: Barnabas Poczos

Example: 2D Gaussian

b . ! ' T ! T l

i J—-—" FirstprincipleCOmponent_

Source: Barnabas Poczos

B

Example: 2D Gaussian

T T T T T T T

b o sovvons g

Séco-nd%PrinciipIe Czompvc%ment—

Source: Barnabas Poczos

How PCA?

Intuition: Maximizing the Variances

* Consider the two projections below
* Which maximizes the variance?

Option A Option B

Source: Andrew Ng (CS229 Lecture Notes)

How PCA?

Intuition: Maximizing the Variances

Maximise u™XX"u

s.t ulu=1 ==| First PC

Construct Langrangian u™XXTu —Au'u

Vector of partial derivatives set to zero
xXXTu—Au=(xx"-A)u=0

As u # 0 then u must be an eigenvector of XX with eigenvalue A

Source: Barnabas Poczos

How PCA?

Intuition: Maximizing the Variances

- Given data {x,, ..., X;,}, compute covariance
matrix 2

X.

1

1 m _ _ _ 1 m
S=—) (x,-X)(x-X)" where X=—
m 4 m =

« PCA basis vectors = the eigenvectors of =

We get the eigvectors using an eigendecomposition.
Power iteration (Von Mises iteration is a standard algorithm for this)

 Larger eigenvalue = more important eigenvectors

Source: Barnabas Poczos

More on Co-Variance

Covariance as a measure of how much each of the dimensions
vary from the mean with respect to each other.

What is the interpretation of covariance
calculations?

e.g.: 2 dimensional data set
x: number of hours studied for a subject
y: marks obtained in that subject
covariance value is say: 104.53
what does this value mean?

source: Robert Collins, CSE/EE586

More on Co-Variance

- Covariance as a measure of how much each of the dimensions
vary from the mean with respect to each other.

A positive value of covariance indicates both
dimensions increase or decrease together e.g. as the
number of hours studied increases, the marks in that
subject increase.

- A negative value indicates while one increases the
other decreases, or vice-versa

- If covariance is zero: the two dimensions are
independent of each other e.g. heights of students vs
The mar‘ks Ob*alned ina SUbJeCT source: Robert Collins, CSE/EE586

More on Co-Variance

- Covariance as a measure of how much each of the dimensions
vary from the mean with respect to each other.

A positive value of covariance indicates both
dimensions increase or decrease together e.g. as the
number of hours studied increases, the marks in that
subject increase.

- A negative value indicates while one increases the
other decreases, or vice-versa

- If covariance is zero: the two dimensions are
independent of each other e.g. heights of students vs
The mar‘ks Ob*alned ina SUbJeCT source: Robert Collins, CSE/EE586

More on Co-Variance

By finding the eigenvalues and eigenvectors of the
covariance matrix, we find that the eigenvectors with
the largest eigenvalues correspond to the dimensions
that have the strongest correlation in the dataset.

This is the principal component.

PCA is a useful statistical technique that has found
application in:

- fields such as face recognition and image compression

- finding patterns in data of high dimension.

source: Robert Collins, CSE/EE586

PCA Summary

Goal: Find r-dim projection that best preserves variance

L.

Compute mean vector u and covariance matrix X
of original points

Compute eigenvectors and eigenvalues of X
Select top r eigenvectors

Project points onto subspace spanned by them:

y=A(x—p)

where y is the new point, x is the old one,
and the rows of A are the eigenvectors

How many PCs

e For n original dimensions, sample covariance matrix is nxn, and has
up to n eigenvectors. So n PCs.

e Where does dimensionality reduction come from?

Can ignore the components of lesser significance.
25 -

20 -
15 A

10 4

Variance (%)

5 4

0 m
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
You do lose some information, but if the eigenvalues are small, you don’t
lose much
e ndimensions in original data

e calculate n eigenvectors and eigenvalues
e choose only the first p eigenvectors, based on their eigenvalues

Breaks

Visualization of data using t-SNE

SNE - Stochastic Neighbor Embedding

@ t-SNE is an alternative dimensionality reduction algorithm.

@ PCA tries to find a global structure

» Low dimensional subspace
» Can lead to local inconsistencies

» Far away point can become nearest neighbors

@ t-SNE tries to perserve local structure

» Low dimensional neighborhood should be the same as original
neighborhood.

@ Unlike PCA almost only used for visualization

» No easy way to embed new points

Visualization of MINIST using PCA

363 /7966a\

67579634%¢

2(790/73a3¥F

BWyl9o0/l 9894

16l ¥iddlInéo

17692£65%199

2222234480 E
VA3 L073657 ..
Olabqylbo2¢d o
7728060980/)

n [
. -

t'. L)

CENOOEWN=-O

Visualization of MINIST using t-SNE

L I' /
"’ ‘n/;‘, !
L SO /,
i
iy
Y ,,47’,»%,,.9
G0 T il
ol "
S G Wt
NI TT a |

LT

SNE -- Stochastic Neighboring Embedding

SNE basic idea:
@ "Encode” high dimensional neighborhood information as a distribution

@ Intuition: Random walk between data points.
» High probability to jump to a close point
@ Find low dimensional points such that their neighborhood distribution is

similar.
@ How do you measure distance between distributions?

» Most common measure: KL divergence

SNE -- Stochastic Neighboring Embedding

Consider the neighborhood around an input data point x; € R?
Imagine that we have a Gaussian distribution centered around x;

Then the probability that x; chooses some other datapoint x; as its neighbor
is in proportion with the density under this Gaussian

A point closer to x; will be more likely than one further away

SNE -- Stochastic Neighboring Embedding

The i — j probability (should be familiar from A1Q2), is the probability that
point x; chooses x; as its neighbor

b o (—lx —x0|2/20%)
S i exp (=[x — x(0][2/252)

With P,'|,' =0
@ The parameter o; sets the size of the neighborhood

» Very low o; - all the probability is in the nearest neighbor.
» Very high o; - Uniform weights.

@ Here we set o; differently for each data point

@ Results depend heavily on o; - it defines the neighborhoods we are trying to
preserve.

@ Final distribution over pairs is symmetrized: P; = 55 (Pij; + Pj);)

SNE -- Stochastic Neighboring Embedding

Given x() .. x(N) € RP we define the distribution P;

Goal: Find good embedding y(!), ..,y(") € R9 for some d < D (normally
or 3)

How do we measure an embedding quality?

For points y(1), .., y(M) € R? we can define distribution Q@ similarly the sai
(notice no o2 and not symmetric)

exp (—[ly" —y9|?)

Qij =
! Dk ZI;ﬁk exp (—”y(l) - y(k)||2)

Optimize @ to be close to P

» Minimize KL-divergence

SNE pitfall: Crowding problem

In high dimension we have more room, points can have a lot of different
neighbors

In 2D a point can have a few neighbors at distance one all far from each
other - what happens when we embed in 1D?

This is the " crowding problem” - we don't have enough room to
accommodate all neighbors.

This is one of the biggest problems with SNE.
t-SNE solution: Change the Gaussian in Q to a heavy tailed distribution.

» if @ changes slower, we have more " wiggle room” to place points at.

SNE pitfall: Crowding problem

Similarity in high dimension

0.30

Similarity

0.6

0.5

0.4

0.3

0.2

0.1}

0.0

-0.1

Similarity in low dimension

-8

-6

There is much more space in high dimensions.

t-Distributed SNE

t-Distributed Stochastic Neighbor Embedding

@ Student-t Probability density p(x) o< (1 + "72)—(V+1)/2

1

> for v =1 we get p(x) o< 72

@ Probability goes to zero much slower then a Gaussian.
@ Can show it is equivalent to averaging Gaussians with some prior over o
@ We can now redefine Q; as
Oty
>k 2oL+ lye — yil[?)

Qjj

@ We leave Pj as is!

How t-SNE? (Optional)

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2,...,X,},

cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(z).
Result: low-dimensional data representation 9 () = {1,y2,--:Vn}-

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
b= PjlitPpij
el 2n

sample initial solution (%) = {y},y»,...,y,} from A(0,10~41)
for /=1 to T do
compute low-dimensional affinities g;; (using Equation 4)

compute gradient % (using Equation 5) .
set 70 = 9 0=1 4 &y o(r) (9/6-D) — o -2)) Gradient Descent

end
end

[Slide credit: " Visualizing Data using t-SNE"]

How t-SNE? (Optional)

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2,...,X,},

cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(z).
Result: low-dimensional data representation 9 () = {1,y2,--:Vn}-

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
b= PjlitPpij
el 2n

sample initial solution (%) = {y},y»,...,y,} from A(0,10~41)
for /=1 to T do
compute low-dimensional affinities g;; (using Equation 4)

compute gradient % (using Equation 5) .
set 70 = 9 0=1 4 &y o(r) (9/6-D) — o -2)) Gradient Descent

end
end

[Slide credit: " Visualizing Data using t-SNE"]

PCA vs t-SNE

* PCA * tSNE
— Requires more than 2 dimensions — Can’t cope with noisy data
— Thrown off by quantised data — Loses the ability to cluster

— Expects linear relationships

PCA vs t-SNE

* PCA * tSNE
— Requires more than 2 dimensions — Can’t cope with noisy data
— Thrown off by quantised data — Loses the ability to cluster

— Expects linear relationships
Answer: Combine the two methods, get the best of both worlds

* PCA * tSNE

— Good at extracting signal from noise — Can reduce to 2D well
— Extracts informative dimensions — Can cope with non-linear scaling

So PCA + t-SNE ?

tSNE is slow. This is probably it’s biggest crime
* tSNE doesn’t scale well to large numbers of cells (10k+)

tSNE only gives reliable information on the closest neighbours large
distance information is almost irrelevant

source: Simon Andrews

UMAP: Uniform Manifold Approximation and Projection

* UMAP is a replacement for tSNE to fulfil the same role

* Conceptually very similar to tSNE, but with a couple of relevant
(and somewhat technical) changes

* Practical outcome is:
— UMAP is quite a bit quicker than tSNE
— UMAP can preserve more global structure than tSNE*
— UMAP can run on raw data without PCA preprocessing*
— UMAP can allow new data to be added to an existing projection

* In theory, but possibly not in practice

source: Simon Andrews

UMAP: Uniform Manifold Approximation and Projection

* Instead of the single perplexity value in tSNE, UMAP defines

— Nearest neighbours: the number of expected nearest neighbours — basically
the same concept as perplexity

— Minimum distance: how tightly UMAP packs points which are close together

* Nearest neighbours will affect the influence given to global vs local
information. Min dist will affect how compactly packed the local
parts of the plot are.

source: Simon Andrews

UMAP: Uniform Manifold Approximation and Projection

* Speed — mostly a level of maths I’'m not going to get into!

— UMAP skips a normalisation step in the calculation of high
dimensional distances which speeds it up

— In the 2D projection UMAP uses a more efficient method to shuffle
the cells into their final position
* Doesn’t have to measure every cell to decide on what to move
* Uses an algorithm which can be multi-threaded
* Algorithm is more deterministic, allowing more data to be projected later

source: Simon Andrews

UMAP is better than tSNE?

2D t-SNE projection 2D UMARP projection Original 3D Data

3D mammoth skeleton projected into 2D

tSNE: Perplexity 2000 2h 5min

UMAP: Nneigh 200, mindist 0.25, 3min
https://pair-code.github.io/understanding-umap/

source: Simon Andrews

UMAP is better than tSNE?

perplexity / n_neighbors

* It may perform better on more complex datasets
* It’s certainly quicker

https://pair-code.github.io/understanding-umap/

source: Simon Andrews

Dimension Reduction using Deep Learning: Auto-Encoder

source: Mitesh M. Khapra

@ An autoencoder is a special type of
feed forward neural network which
does the following

Dimension Reduction using Deep Learning: Auto-Encoder

G -

© 00O

G)~

h = g(Wx; +b)

source: Mitesh M. Khapra

@ An autoencoder is a special type of
feed forward neural network which
does the following

@ Encodes its input x; into a hidden
representation h

Dimension Reduction using Deep Learning: Auto-Encoder

G s

© 00 O

G)~

h = g(Wx; +b)
% = f(W*h+c)

source: Mitesh M. Khapra

@ An autoencoder is a special type of
feed forward neural network which
does the following

@ Encodes its input x; into a hidden
representation h

@ Decodes the input again from this
hidden representation

Dimension Reduction using Deep Learning: Auto-Encoder

G s

© 00 O

G)~

h = g(Wx; + b)
% = f(W*h+c)

source: Mitesh M. Khapra

An autoencoder is a special type of
feed forward neural network which
does the following

Encodes its input x; into a hidden
representation h

Decodes the input again from this
hidden representation

The model is trained to minimize a
certain loss function which will ensure
that X; is close to x; (we will see some
such loss functions soon)

How about a fat auto-encoder?

@ Let us consider the case when
(> Xi dim(h) > dim(x;)

@ In such a case the autoencoder could

learn a trivial encoding by simply

w* |
@ Q Q Q Q @ h copying x; into h and then copying

W T h into X;

@coo-

h = g(Wx; +b)
% = f(W*h +c)

source: Mitesh M. Khapra

How about a fat auto-encoder?

@ Let us consider the case when
(> Xi dim(h) > dim(x;)

@ In such a case the autoencoder could

learn a trivial encoding by simply

w* |
@ Q Q Q Q @ h copying x; into h and then copying

W T h into X;

@coo-

h = g(Wx; +b)
% = f(W*h +c)

source: Mitesh M. Khapra

How about a fat auto-encoder?

@ Let us consider the case when
< > Xi dim(h) > dim(x;)
W T @ In such a case the autoencoder could

learn a trivial encoding by simply

< Q @ h copying x; into h and then copying
h into X;

@ Such an identity encoding is useless

< > Xi in practice as it does not really tell us

anything about the important char-
h = g(Wx; +b) acteristics of the data

source: Mitesh M. Khapra

Encoder

Going Deeper: Stacked Auto-encoder

Output
P
/L f
/ \
\
I
\ /
NV \
~ \\
P
Y
Decoder

How to choose encoder/decoder

e [Tabular Data (e.g., clinical variables, gene expression

profiles etc.) : Multi-layer Perceptron/Fully Connected
Layers

e Imaging Data (e.g., MRI, CT scans etc.) : Convolutional
Neural Networks

e Sequence Data (e.g., Texts, ECG etc.) : Recurrent
Neural Networks

Multi-Modal Auto-encoder

Reconstructed Output 1 Reconstructed Output 2
(OO ees QO] (OO ¢ee OO]

t

(@@ ++- 0| (0@ - OO |

\/s'hared

[. O eee OO] Representation

S

- N ([B
Q0 ¢+o¢e OO Q0 ¢+ OO0
_ P . J

-+ 1t
QO eee OO | (OO eee OO |
Input 1 Input 2

Take-Aways

Dimension Reduction is useful for removing noise,
visualization, reducing computational cost, data

compression.

PCA is a linear dimension reduction method that tries
to maximize the variances in low-dimensional space.

T-SNE and UMAP are non-linear visualization
approaches that aim to preserve neighboring

similarities.

Deep Auto-Encoder is a non-linear representation
learning approach that aims to reconstruct the inputs.

