LMP 1210H: Basic Principles of Machine
Learning in Biomedical Research

Bo Wang
Al Lead Scientist, PMCC, UHN
CIFAR Al Chair, Vector Institute
Assistant Professor, University of Toronto

A brief history

Social excitement
and concern

Success of
AlphaGo,
Libratus, etc...

Boom 1 Boom 2 Boom 3

: : Deep Learning
“GOFAI" “Expert Systems” “Machine Learning”

Autonomous
Vehicles

Winter 1 Winter 2

Autonomous
Weapons

knowledge

engineering
DENDRAL, MYCIN

AAAl Jsa) PROLOG, Lisp

FGCS, SCI, MCC, Alvey, ESPRIT
Stanford McCarthy, Minsky Feigenbaum, Brooks
| | |

1960s 1970 1980s 1990s 2000s ?010s

heuristic
search
General Problem Solver
Samuels’ Checkers Program
MIT,CMU, Simon, Newell,

Perceptron Backprop LeNet AlexNet
1958 1974 1998 2012

How do we teach computers vision?

What makes vision hard?

@ Vison needs to be robust to a lot of transformations or distortions:
change in pose/viewpoint
change in illumination

o
e deformation
o occlusion (some objects are hidden behind others)

(]

@ Many object categories can vary wildly in appearance (e.g. chairs)

@ Geoff Hinton: “Imaging a medical database in which the age of the
patient sometimes hops to the input dimension which normally codes
for weight!”

How do we teach computers vision?

What will you do before this lecture?

A

This isn't going to scale to full-sized images.

32 input activation
— 1f o | 1—
3072 X 10

weights

3

How do we teach computers vision?

Suppose we want to train a network that takes a 200 x 200 RGB image as
input.

I 1000 hidden units |

densely connected

200
200
[3

What is the problem with having this as the first layer?

@ Too many parameters! Input size = 200 x 200 x 3 = 120K.
Parameters = 120K x 1000 = 120 million.

@ What happens if the object in the image shifts a little?

How do we teach computers vision?

In the fully connected layer, each feature (hidden unit) looks at the entire image.
Since the image is a BIG thing, we end up with lots of parameters.

I @) |

But, do we really expect to learn a useful feature at the first layer which depends

on pixels that are spatially far away ?
The far away pixels will probably belong to completely different objects (or object

sub-parts). Very little correlation.
We want the incoming weights to focus on local patterns of the input image.

How do we teach computers vision?

The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

E.g., edges, corners, contours, object parts

We want a neural net architecture that lets us learn a set of feature
detectors shared at all image locations.

A brief review: Convolution

We've already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we'll introduce a new high-level operation, convolution. Here the
motivation isn’'t computational efficiency — we'll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.

A brief review: Convolution

We've already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we'll introduce a new high-level operation, convolution. Here the
motivation isn't computational efficiency — we'll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.

Let's look at the 1-D case first. If a and b are two arrays,
(a * b)t — Z aTbt_—,-.

Note: indexing conventions are inconsistent. We'll explain them in each
case.

A brief review: 2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A* U—ZzAstB/ s, j—t-

Convolution

Some properties of convolution:
e Commutativity
axb=>bxa

@ Linearity
ax(Ab+ Axc) =Aaxb+ Aaxc

A brief review: 2-D Convolution

Flip-and-Filter
1131 P
0(-1]1]
0|-1
22|41
-1 0
1131 X 5 11572
0l-1]1 o234
21211 2|16 |4 -3
092 -2 | 1

Apply convolutions on images

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

Apply convolutions on images

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

0o/1]0
k [1]4]1
0|10

Answer: Blur
Note: We call the resulted image as an "activation map” by the kernel.

Apply convolutions on images

What does this convolution kernel do?

Apply convolutions on images

What does this convolution kernel do?

0|-1]0
k |-1]8]-1
0/-1]0

Answer: Sharpen
Note: We call the resulted image as an "activation map” by the kernel.

Apply convolutions on images

What does this convolution kernel do?

Apply convolutions on images

What does this convolution kernel do?

Answer: Edge Detection

Note: We call the resulted image as an "activation map” by the kernel.

it

Apply convolutions on images

What does this convolution kernel do?

Apply convolutions on images

What does this convolution kernel do?

1]0|-1
k |2]0]-=2
1]0]-1

Answer: "Stronger” Edge Detection
Note: We call the resulted image as an "activation map” by the kernel.

A new layer: Convolution Layers

Fully connected layers:

Each hidden unit looks at the entire image.

A new layer: Convolution Layers

Locally connected layers:

o=
'

Each column of hidden units looks at a small region of the image.

A new layer: Convolution Layers

Convolution layers:

()

Tied weights

Each column of hidden units looks at a small region of the image, and the
weights are shared between all image locations.

Example Time: A closer look at convolution

o il —

4
Convolved
Image Feature
Input: 5x5 Output: 3x 3
Kernel: 3 x 3

3=(5-3)+1

o - =

it

Example Time: A closer look at convolution with padding

Input: 5 x5 Output: 5x 5

Kernel: 3 x 3

_ 5=(5-3+2*1)+1
Padding: 1

Example Time: A closer look at convolution with stride

Input: 5 x5 Output: 3 x 3
Kernel: 3 x 3

Padding: 1
stride =2 3=(5-3+2%1)/2+1

A closer look at convolution with high dimensional inputs

Note: Kernel depth always equals to the input depth._

Summary : Convolution Layer

A

I output maps I

A

w

: : : kernel dimension K

';;' height H
Jinput maps T |

width W
@ Input: An array of size
W x HxJ @ Output: Feature maps of size
e Hyper-parameters: W x HxI
o Number of filters: M o W=(W-K+2P)/S+1
Size of filters: K o H=(H-K+2P)/S+1
the stride: S o I =M

¢ o ¢

Number of zero-padding: P

Let's do some counting: Size of a Conv Net

@ Ways to measure the size of a network:

o Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).

e Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.

o Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

@ We saw that a fully connected layer with M input units and N output
units has MN connections and MN weights.

@ The story for conv nets is more complicated.

Let’s do some counting: Size of a Conv Net

A
; A
Lt

I output maps I

kernel dimension K

height H
Jinputmaps T |
width W
fully connected layer convolution layer
output units WHI WHI
weights WWHHAL K21J

connections WWHHIJ WHK?1J

Let's do some counting: Size of a Conv Net (Including bias
terms)

I output maps I

height H
Jinput maps T |
width W
fully connected layer convolution layer
output units WHI WHI
weights WWHHIJ + WHI K21J + |

connections WWHHIJ+ WHI — WHK2IJ+ WHI

Going Deeply Convolutional

Convolution layers can be stacked:

Tied weights

Pooling layers

The other type of layer in a pooling layer. These layers reduce the size of
the representation and build in invariance to small transformations.

Most commonly, we use max-pooling, which computes the maximum value
of the units in a pooling group:

yi=_ _ max gz
J in pooling group

Pooling Layer

Input

3

5

maxpool

o| | 0|

7
9
8

1
3
4

Ul OO | N

Input: 4 x 4
Kernel: 2 x 2

Stride: 2

Output: 2 x2

2=(4-2)/2+1

Summary : Pooling Layer

(v1) (v2) (%)
@) G () G0 &) G (&)
@ Input: An array of size @ Output: Feature maps of size
W x HxJ W x HxI
e Hyper-parameters: ° \{T/ =(W-K)/S+1
o Size of filters: K e H=(H-K)/S+1
o the stride: S o | =1J

Common Setting: K=2,5S=2

Convolutional networks

Let's finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers. The

convolution layer has a set of filters. Its output is a set of feature maps,
each one obtained by convolving the image with a filter.

convolution

Convolutional networks

Let's finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers. The

convolution layer has a set of filters. Its output is a set of feature maps,
each one obtained by convolving the image with a filter.

Example first-layer filters

(Zeiler and Fergus, 2013,

Visualizing and understanding convolutional networks)

convolution

Convolutional networks

It's common to apply a linear rectification nonlinearity: y; = max(z;, 0)

Why might we do this?

convolution linear
rectification

convolution layer

Convolutional networks

It's common to apply a linear rectification nonlinearity: y; = max(z;, 0)

Why might we do this?

@ Convolution is a linear operation.
Therefore, we need a nonlinearity,
otherwise 2 convolution layers
would be no more powerful than 1.

convolution linear @ Two edges in opposite directions
rectification)
shouldn’t cancel

convolution layer

Convolutional networks

convolution linear max convolution
rectification pooling

convolution layer pooling layer

Convolutional networks

Because of pooling, higher-layer filters can cover a larger region of the input than
equal-sized filters in the lower layers.

convolution

linear

max
rectification

convolution
pooling

convolution layer

pooling layer

Equivariance and Invariance

We said the network’s responses should be robust to translations of the
input. But this can mean two different things.

@ Convolution layers are equivariant: if you translate the inputs, the
outputs are translated by the same amount.

@ We'd like the network’s predictions to be invariant: if you translate
the inputs, the prediction should not change.

@ Pooling layers provide invariance to small translations.

