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Administrative Details

1. Teaching Staff 

Instructor: Bo Wang, bowang.wang@utoronto.ca
TA: Zeinab Navidi, zeinab.navidi@mail.utoronto.ca

2. Useful Information

Office Hours: Wed 10-10:30 am (except reading week 
and holidays), Zoom

Piazza: the best way to ask questions!
Website: https://lmp1210-uoft.github.io/2023/
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Administrative Details

3. Evaluations

Three assignments (45%) (Theory + Coding)

Term projects (40%) (2-3 students per group, details later)

In-class participation (15%) 



More on Assignments

1. Collaboration on the assignments is NOT allowed! 
Each student is responsible for their own work. Discussion of assignments
should be limited to clarification of the handout itself, and should not involve
any sharing of pseudocode or code or simulation results. Violation of this
policy is grounds for a semester grade of F, in accordance with university
regulations.

2. Assignments should be handed in by deadline.
A late penalty of 10% per day will be assessed thereafter (up to 3 days, then       

submission is blocked.) 
Extensions will be granted only in special situations, and you will need a 

Student Medical Certificate or a written request approved by the course coordinator 
at least one week before the due date. 



More on Programming

2. Don’t be scared by Python!

1. We will use Python only! 
Python is the most popular programming language for machine learning.
Tutorials about the basics of python will be provided. We will also have
programming exercise at every assignment.

A real-life example:



Why this course?

1. One of the first graduate courses in medical departments about 
machine learning!

2. We actually code! 

3. AI/ML is changing the way we perform research in medicine. 

AI will not replace doctors, but doctors who use AI will replace 
those who don’t. ---- some famous person.

AI will not replace PHDs, but PHDs who use AI will replace 
those who don’t. ---- Bo Wang.



What is Artificial Intelligence (AI)



What is Artificial Intelligence (AI)



Wheels :
Computing

Oil: Data
Steering: Business

Engine:
Algorithms

A-B-C-D

What makes AI so successful?



A：Algorithms



Convolutional Neural Network (CNN) Images



Very Deep Convolutional Neural Network (CNN)



C：Computing



Computing Hardware for AI



D : Data



Big Data in Computer Vision



Crowd-sourcing Data Annotation



B : Business



AI + Computer Vision



AI + Finance



AI + Manufacturing



AI + Retails



New Era: AI + Health Care



Where are we now (AI + Healthcare)?
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researchers understand brain circuitry and build brain–machine 
interfaces172,178,179. Machine vision tracking of human and animal 
behavior with a transfer-learning algorithm is yet another example 
of the progress being made180.

Drug discovery is being revamped with the use of AI at many 
levels, including sophisticated natural language processing searches 
of the biomedical literature, data mining of millions of molecular 
structures, designing and making new molecules, predicting off-
target effects and toxicity, predicting the right dose for experimen-
tal drugs, and developing cellular assays at a massive scale181–184. 
There is new hope that preclinical animal testing can be reduced 
via machine-learning prediction of toxicity185. AI cryptography has 
been used to combine large proprietary pharmaceutical company 
datasets and discover previously unidentified drug interactions186. 
The story of the University of Cambridge and Manchester’s robot 
‘Eve’ and how it autonomously discovered an antimalarial drug that 
is a constituent of toothpaste has galvanized interest in using AI to 
accelerate the process, with a long list of start-ups and partnerships 
with major pharmaceutical firms181,187,188.

Limitations and challenges
Despite all the promises of AI technology, there are formidable 
obstacles and pitfalls. The state of AI hype has far exceeded the 
state of AI science, especially when it pertains to validation and 
readiness for implementation in patient care. A recent example is 
IBM Watson Health’s cancer AI algorithm (known as Watson for 
Oncology). Used by hundreds of hospitals around the world for 
recommending treatments for patients with cancer, the algorithm 
was based on a small number of synthetic, nonreal cases with very 
limited input (real data) of oncologists189. Many of the actual out-
put recommendations for treatment were shown to be erroneous,  
such as suggesting the use of bevacizumab in a patient with severe 

bleeding, which represents an explicit contraindication and ‘black 
box’ warning for the drug189. This example also highlights the poten-
tial for major harm to patients, and thus for medical malpractice, by 
a flawed algorithm. Instead of a single doctor’s mistake hurting a 
patient, the potential for a machine algorithm inducing iatrogenic 
risk is vast. This is all the more reason that systematic debugging, 
audit, extensive simulation, and validation, along with prospective 
scrutiny, are required when an AI algorithm is unleashed in clinical 
practice. It also underscores the need to require more evidence and 
robust validation to exceed the recent downgrading of FDA regula-
tory requirements for medical algorithm approval190.

There has been much written about the black box of algorithms, 
and much controversy surrounding this topic191–193; especially in 
the case of DNNs, it may not be possible to understand the deter-
mination of output. This opaqueness has led to both demands 
for explainability, such as the European Union’s General Data 
Protection Regulation requirement for transparency—deconvolu-
tion of an algorithm’s black box—before an algorithm can be used 
for patient care194. While this debate of whether it is acceptable to use 
nontransparent algorithms for patient care is unsettled, it is notable 
that many aspects of the practice of medicine are unexplained, such 
as prescription of a drug without a known mechanism of action.

Inequities are one of the most important problems in healthcare 
today, especially in the United States, which does not provide care 
for all of its citizens. With the knowledge that low socioeconomic 
status is a major risk factor for premature mortality195, the dispro-
portionate use of AI in the ‘haves,’ as opposed to the ‘have-nots,’ 
could widen the present gap in health outcomes. Intertwined with 
this concern of exacerbating pre-existing inequities is embedded 
bias present in many algorithms due to lack of inclusion of minori-
ties in datasets. Examples are the algorithms in dermatology that 
diagnose melanoma but lack inclusion of skin color47 and the use 
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What is Artificial Intelligence (AI)
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performance was sobering and indicates that there is much more  
work to do.

For each of these studies, a relatively large number of labeled 
scans were used for training and subsequent evaluation, with 
AUCs ranging from 0.99 for hip fracture to 0.84 intracranial bleed-
ing and liver masses to 0.56 for acute neurologic case screening. It 
is not possible to compare DNN accuracy from one study to the 
next because of marked differences in methodology. Furthermore, 
ROC and AUC metrics are not necessarily indicative of clini-
cal utility or even the best way to express accuracy of the model’s  
performance28,29. Furthermore, many of these reports still only  
exist in preprint form and have not appeared in peer-reviewed pub-
lications. Validation of the performance of an algorithm in terms of 
its accuracy is not equivalent to demonstrating clinical efficacy. This 
is what Pearse Keane and I have referred to as the ‘AI chasm’—that is,  
an algorithm with an AUC of 0.99 is not worth very much if it is  
not proven to improve clinical outcomes30. Among the studies that 
have gone through peer review (many of which are summarized 
in Table 1), the only prospective validation studies in a real-world 
setting have been for diabetic retinopathy31,32, detection of wrist 
fractures in the emergy room setting33, histologic breast cancer 
metastases34,35, very small colonic polyps36,37, and congenital cata-
racts in a small group of children38. The field clearly is far from dem-
onstrating very high and reproducible machine accuracy, let alone 
clinical utility, for most medical scans and images in the real-world 
clinical environment (Table 1).

Pathology
Pathologists have been much slower at adopting digitization of scans 
than radiologists39—they are still not routinely converting glass 
slides to digital images and use whole-slide imaging (WSI) to enable 
viewing of an entire tissue sample on a slide. Marked heterogene-
ity and inconsistency among pathologists’ interpretations of slides 
has been amply documented, exemplified by a lack of agreement 

in diagnosis of common types of lung cancer (Κ  =  0.41–0.46)40. 
Deep learning of digitized pathology slides offers the potential to 
improve accuracy and speed of interpretation, as assessed in a few 
retrospective studies. In a study of WSI of breast cancer, with or 
without lymph node metastases, that compared the performance of 
11 pathologists with that of multiple algorithmic interpretations, the 
results varied and were affected in part by the length of time that the 
pathologists had to review the slides41. Some of the five algorithms 
performed better than the group of pathologists, who had varying 
expertise. The pathologists were given 129 test slides and had less 
than 1 minute for review per slide, which likely does not reflect nor-
mal workflow. On the other hand, when one expert pathologist had 
no time limits and took 30 hours to review the same slide set, the 
results were comparable with the algorithm for detecting noninva-
sive ductal carcinoma42.

Box 1 | Deep learning

While the roots of AI date back over 80 years from concepts 
laid out by Alan Turing204,205 and Warren McCulloch and Walter 
Pitts206, it was not until 2012 that the subtype of deep learning 
was widely accepted as a viable form of AI207. A deep learning 
neural network consists of digitized inputs, such as an image 
or speech, which proceed through multiple layers of connected 
‘neurons’ that progressively detect features, and ultimately pro-
vides an output. By analyzing 1.2 million carefully annotated 
images from over 15 million in the ImageNet database, a DNN 
achieved, for that point in time, an unprecedented low error 
rate for automated image classi!cation. "at report, along with 
Google Brain’s 10 million images from YouTube videos to accu-
rately detect cats, laid the groundwork for future progress. With-
in 5 years, in speci!c large data-labeled test sets, deep-learning 
algorithms for image recognition surpassed the human accuracy 
rate208,209, and, in parallel, suprahuman performance was demon-
strated for speech recognition.

"e basic DNN architecture is like a club sandwich turned on 
its side, with an input layer, a number of hidden layers ranging 
from 5 to 1,000, each responding to di#erent features of the 
image (like shape or edges), and an output layer. "e layers are 
‘neurons,’ comprising a neural network, even though there is 
little support of the notion that these arti!cial neurons function 
similarly to human neurons. A key di#erentiating feature of deep 
learning compared with other subtypes of AI is its autodidactic 
quality; the neural network is not designed by humans, but rather 

the number of layers (Fig. 1) is determined by the data itself. 
Image and speech recognition have primarily used supervised 
learning, with training from known patterns and labeled input 
data, commonly referred to as ground truths. Learning from 
unknown patterns without labeled input data—unsupervised 
learning—has very rarely been applied to date. "ere are many 
types of DNNs and learning, including convolutional, recurrent, 
generative adversarial, transfer, reinforcement, representation, 
and transfer (for review see refs. 210,211). Deep-learning algorithms 
have been the backbone of computer performance that exceeds 
human ability in multiple games, including the Atari video 
game Breakout, the classic game of Go, and Texas Hold’em 
poker. DNNs are largely responsible for the exceptional progress 
in autonomous cars, which is viewed by most as the pinnacle 
technological achievement of AI to date. Notably, except in 
the cases of games and self-driving cars, a major limitation to 
interpretation of claims reporting suprahuman performance of 
these algorithms is that analytics are performed on previously 
generated data in silico, not prospectively in real-world clinical 
conditions. Furthermore, the lack of large datasets of carefully 
annotated images has been limiting across various disciplines in 
medicine. Ironically, to compensate for this de!ciency, generative 
adversarial networks have been used to synthetically produce 
large image datasets at high resolution, including mammograms, 
skin lesions, echocardiograms, and brain and retina scans, that 
could be used to help train DNNs212–216.

Data

Input layer Output layer

Hidden layers

Fig. 1 | A deep neural network, simplified. Credit: Debbie Maizels/Springer 
Nature
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Deep Neural Network
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What is Machine Learning (ML)

Machine learning (ML) is the study of computer
algorithms that can improve automatically through
experience and by the use of data. It is seen as a part of
artificial intelligence.

----- From Wikipedia, the free encyclopedia



Relation to Human Learning



Relation to Statistics
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A brief history of Machine Learning



Source: https://perfectial.com/blog/reinforcement-learning-applications/

What is Machine Learning (ML)



How does AI/ML take over the world? Three Steps! 



A cake without the cherry is still a good cake!



Why not jump straight to deep learning?

1. The principles you learn in this course will be essential to really 
understand deep learning. 

2. The techniques in this course are still the first things to try for a 
new ML problem. 

3. All models are wrong, but some are useful. --- George E. Box



Why not jump straight to deep learning?

2017 Kaggle survey of data science and ML practitioners: what data science 
methods do you use at work? 



10-min Break

Next: Preliminaries and Nearest Neighbors



A typical ML workflow



Supervised Learning---Basic Setup

We are going to focus on supervised learning for the next few lectures. 



Input Vectors
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Input Vectors



The very first supervised learning algorithm: 
Nearest Neighbors



Nearest Neighbors: Decision Boundary



Nearest Neighbors: Pitfalls



K - Nearest Neighbors (KNN)



K - Nearest Neighbors (KNN)



KNN Decision Boundaries



KNN Decision Boundaries



How to choose K? 



How to choose K? 



How to choose K? 



Pitfalls: Curse of Dimensionality



Pitfalls: Normalization



Pitfalls: Computational Cost



Pitfalls: Sensitive to similarity metrics



Pitfalls: Sensitive to similarity metrics



Conclusions



KNN in Healthcare

Digital Twin 



KNN in Healthcare

Predicting Cardiovascular Disease Using KNN

Source: 
https://towardsdatascience.co
m/predicting-cardiovascular-
disease-using-k-nearest-
neighbors-algorithm-
614b0ecbf122




