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Administrative Details

1. Homework
a. Homework 1 1s out! Due: Feb 2, 9:59am
b. Homework 2 will be released on Feb 2

2. Final Project
a. Team: 2-3 students
b. Proposal due: Feb 20.
c. Visit the office hour before submitting the proposal
d. Proposal will not be graded
¢. Team without proposal submissions cannot
participate in the final project.
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More on the final projects

1. How to form a good team?

Keywords: Multidisciplinary, Open Communications, Piazza

2. How to write a good proposal?

Keywords: Concise, Experimental Design, Office Hours

3. How to provide a good presentation?

Keywords: Clear Structures, Memorable
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Recap: K - Nearest Neighbors (KNN)

@ Nearest neighbors sensitive to noise or mis-labeled data (“class noise”).
Solution?

@ Smooth by having k nearest neighbors vote

" Algorithm (kNN): R

1. Find k examples {x(?) ¢(9)} closest to the test instance x
2. Classification output is majority class

k
= argmax I{t(*) = ¢®
y = argm > I{ }

§ = )

[{statement} is the identity function and is equal to one whenever the
statement is true. We could also write this as §(¢t(*),t(")) with &(a,b) = 1 if
a = b, 0 otherwise. I{1}.
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Recap: K - Nearest Neighbors (KNN)

Simple algorithm that does all its work at test time — in a sense,
no learning!

Can be used for regression too, which we encounter later.

Can control the complexity by varying k

Suffers from the Curse of Dimensionality

Peter Munk
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Decision Trees

A normal tree A decision tree

Woman

Yes . No

Age | dass

<30 \ >30 1%t class ~ other

Probébly Probably || Probably Probably
going to dead going to dead
survive

survive

@ Decision Trees

» Simple but powerful learning algorithm

» One of the most widely used learning algorithms in Kaggle
competitions

» Lets us introduce ensembles, a key idea in ML

@ Useful information theoretic concepts (entropy, mutual information, etc.)
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Decision Trees : Basic Terminologies

Branch/ Sub-Tree

Splitting

‘ Decision Node ]

=S B S =
[ Terminal Node J [Tenninal Node J

Note:- A is parent node of B and C.

. Root Node: This attribute is used for dividing the data into two or more sets. The feature
attribute in this node is selected based on Attribute Selection Techniques.

. Branch or Sub-Tree: A part of the entire decision tree is called a branch or sub-tree.

. Splitting: Dividing a node into two or more sub-nodes based on if-else conditions.

. Decision Node: After splitting the sub-nodes into further sub-nodes, then it is called the
decision node.

. Leaf or Terminal Node: This is the end of the decision tree where it cannot be split into

further sub-nodes.



Decision Trees: A simple example

@ Decision trees make predictions by recursively splitting on different
attributes according to a tree structure.

@ Example: classifying fruit as an orange or lemon based on height and
width

E/vidth > 6.5cm? ]

[height>9.5cm? ] [height>6.0cm? ]

WP BB Centre



Decision Trees: A simple example

Test example

width > 6.5cm?

height > 9.5cm? height > 6.0cm?

UNN:..:
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Decision Trees: A simple example

@ For continuous attributes, split based on less than or greater than some

threshold

@ Thus, input space is divided into regions with boundaries parallel to axes

107

T T
' 4

height (cm)

® oranges|

A |emons
4 6 8 10
width (cm)
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[width > 6.5cm?
Yes No
[height > 9.5cm? ] [height > 6.0cm? ]
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Decision Trees: Wait or Not
,J

Ltm:n %ﬂp

You can tell a lot about a fellow's character 3 ¥ 9 9

by his way of eating jellybeans. Tm@@ﬁ ]-jg

----Ronald Reagan

You can tell a lot about a fellow's character by

his way of eating at a restaurant.
----Bo Wang
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Decision Trees: Wait or Not
@ What if the attributes are discrete?

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price| Rain | Res | Type Est WillWait

X1 Yes| No| No | Yes| Some| $38 | No @ Yes| French| 0-10 | 1y, = Yes
X9 Yes| No | No | Yes| Full $ No @ No Thai | 30-60 | vy, = No
X3 No | Yes No No | Some $ No | No | Burger | 0-10 | y3= Yes
X4 Yes| No | Yes| Yes | Full $ Yes  No Thai 10-30 | y4= Yes
X5 Yes| No | Yes No | Full $$8 | No Yes| French| >60 | ys= No
Xg No | Yes| No | Yes| Some | $%5 | Yes Yes| Italian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 | y;= No
Xg No| No| No | Yes| Some| $% | Yes Yes| Thai 0-10 | yg = Yes
Xg No | Yes| Yes| No Full $ Yes | No | Burger| >60 | yo= No
X10 Yes | Yes| Yes| Yes| Full | $38 | No | Yes | Italian | 10-30 | 30 = No
X11 No| No| No | No | None $ No | No Thai 0-10 | yu = No
X12 Yes | Yes | Yes| Yes Full $ No = No | Burger | 30-60 | y;2 = Yes

1l Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

32 Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

Sy Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. Price: the restaurant's price range ($, $$, $$$).

/= Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. Type: the kind of restaurant (French, Italian, Thai or Burger).

Attributes: 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

- B EE W \_CILILIC



Decision Trees: Wait or Not

@ Possible tree to decide whether to wait (T) or not (F)

Patrons?

WaitEstimate?

Alternate? Hungry?

VWS No Yes

Reservation? Fri/Sat? Alternate?
No Yes No Yes No Yes

Bar? Raining?
No Yes No Yes

b NMNG
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Decision Trees: Wait or Not

WaitEstimate? |

>60 0-10

0

N Yes

| Reservation? ]I Fri/Sat? I [ Alternate? I
No Yes No Yes

Raining?

@ Internal nodes test attributes

@ Branching is determined by attribute value

|o Leaf nodes are outputs (predictions)



Decision Trees

@ Discrete-input, discrete-output case:

» Decision trees can express any function of the input attributes
» Example: For Boolean functions, the truth table row — path to leaf

A B AxorB
F F F
F T T
T F T
T T F

@ Continuous-input, continuous-output case:

» Can approximate any function arbitrarily closely

@ Trivially, there is a consistent decision tree for any training set w/ one
path to leaf for each example (unless f nondeterministic in x) but it
probably won’t generalize to new examples

Peter Munk
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Decision Trees

+@ |1
@ Each path from root to a leaf defines a region R,, g ) —-!
of input space y . 3" ‘
o Let {(z(m1) ¢(m)) . (x(mr) t(mr))) be the GT
training examples that fall into R,, ‘ : ¢ e

@ Classification tree:
» discrete output

» leaf value y™ typically set to the most common value in
CTEN)!

@ Regression tree:
» continuous output

» leaf value y™ typically set to the mean value in {t(ml), - ,t(mk)}

Peter Munk
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How to learn the trees

Learning the simplest (smallest) decision tree which correctly classifies

training set is an NP complete problem (if you are interested, check: Hyafil &
Rivest’76).

@ Resort to a greedy heuristic! Start with empty decision tree and
complete training set

» Split on the “best” attribute, i.e. partition dataset
» Recurse on subpartitions

@ When should we stop?

@ Which attribute is the “best” (and where should we split, if continuous)?

» Choose based on accuracy?
Loss: misclassification error

>
» Say region R is split in R; and Ry based on loss L(R).
> _ | Ba|L(R1)+[R2|L(R2)

|R1|+| Rz

Accuracy gain is L(R)

Peter Munk
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How to learn the trees

@ Why isn’t accuracy a good measure?

@ Classify by the majority, loss is the misclassification error.

100 lemons

NO

50 lemons 50 lemons

@ Is this split good? Zero accuracy gain

L(R) - ’RllL(Rl) + ’RQ‘L(R2) . 49 B 50 x 0+ 99 x % i
|R1| + ‘RQ, 149 149 —

@ But we have reduced our uncertainty about whether a fruit is a lemon!

Peter Munk
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How to learn the trees

@ How can we quantify uncertainty in prediction for a given leaf node?

» All examples in leaf have the same class: good (low uncertainty)
» Each class has the same number of examples in leaf: bad (high
uncertainty)

@ Idea: Use counts at leaves to define probability distributions, and use
information theory to measure uncertainty

Peter Munk
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Entropy: a way to measure uncertainty

Q: Which coin is more uncertain?

Sequence 1:
000100000000 000100 ...7

Sequence 2:
1010111010011 0101...7
16
3 10
VEersus
: ol L
E—

1 0 1
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Entropy: a way to measure uncertainty

Entropy is a measure of expected “surprise”: How uncertain are we of the
value of a draw from this distribution?

H(X) = —Ex~pllog, p(X)] = — Y p(z)log, p(x
rxeX
8/9
419 SI9
” - .
—

0 1

8 g8 1 1 1 4 4 5 5
—§10g2§—§10g2§“‘§ —510g2§—§10g2§%099

@ Averages over information content of each observation
@ Unit = bits (based on the base of logarithm)
@ A fair coin flip has 1 bit of entropy

Peter Munk
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Entropy: a way to measure uncertainty

ZP ) log, p(x)

rzeX

entropy

1.0
0.8
0.6
0.4

0.2

0 probability p of heads

0.2 0.4 0.6 0.8
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Entropy: a way to measure uncertainty

@ “High Entropy”:

» Variable has a uniform like distribution
» Flat histogram
» Values sampled from it are less predictable

@ “Low Entropy”

» Distribution of variable has peaks and valleys
» Histogram has lows and highs
» Values sampled from it are more predictable

Peter Munk
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What 1s the entropy of English?

27 characters (A-Z, space).

100,000 words (avg 5.5 characters each)

e Assuming independence between successive characters:
— uniform character distribution: log27 = 4.75 bits/character
— true character distribution: 4.03 bits/character

Fun Fact: Which language has the largest entropy?

For example, the language with the largest entropy for the random texts was Finnish, with
average entropy of 10.4 bits/word while, at the other end, Old Egyptian had on average 7
bits/word. may 13, 2011

B National Institutes of Health (.... - https://www.ncbi.nim.nih.gov ...

Universal Entropy of Word Ordering Across Linguistic Families

Peter Munk
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Entropy: a way to measure uncertainty

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

H(X,Y) = =) > p(x,y)log,p(x,y)
zeX yeY
4 24 11 2 2 50 50
= ——1lo — 0 — 0 — 0gy ——
100 “®27100 ~ 100 °®27100 ~ 100 %2100 ~ 100 °®2 100
~ 1.56bits

Peter Munk
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Entropy: a way to measure uncertainty

H(X,Y)

H(X)

H(Y)

@ Some useful properties for the discrete case:

» H is always non-negative.

» Chain rule: H(X,Y)=H(X|Y)+ HY)=H(Y|X)+ H(X).

» If X and Y independent, then X does not tell us anything about Y:
H(Y|X)=H(Y).

» If X and Y independent, then H(X,Y) = H(X) + H(Y).

» But Y tells us everything about Y: H(Y|Y) = 0.

» By knowing X, we can only decrease uncertainty about Y:
H(Y|X)<H(Y).

Exercise: Verify these!
The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and ... .

Peter Munk
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Entropy: a way to measure uncertainty

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ The expected conditional entropy:

= Y pHYIX =

rxeX

= =) > plx,y)log, p(ylr)

zeX yeY
= _E(X,Y)Np(x,y)[logZP(Y‘X)]

Peter Munk
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Entropy: a way to measure uncertainty

@ Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 | 50/100

@ What is the entropy of cloudiness, given the knowledge of whether or not
it is raining?

HYIX) = 3 p@)HY|X =)
reX
1 . 3 .
= ZH (cloudy|raining) + é_lH (cloudy|not raining)
~ 0.75 bits

Peter Munk
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Learn the Decision Trees with Entropy

@ Information gain measures the informativeness of a variable, which is
exactly what we desire in a decision tree attribute!

@ What is the information gain of this split?

100 lemons

NO

50 lemons 50 lemons

0 oranges 49 oranges
@ Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left

or right split taken, and treat counts as probabilities.
@ Root entropy: H(Y) = — -2t logy (%) — 199 ]og,(199) ~ 0.91

149 149 149 149
@ Leafs entropy: H(Y|B = left) =0, H(Y|B = right) ~ 1.
o |IG(Y|B)=H(Y)—- H(Y|B)
= H(Y) - {H(Y|B=left)P(B=left) + H(Y|B =right)P(B =right)}
~091—(0-5+1-3)~024>0
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Learn the Decision Trees with Entropy

P
Q[«

>
I3
*o

width > 6.5cm?

6 é Yes No
é o helght >9.5cm? ] [helght >6.0cm?
4

® oranges
A |emons

- ﬁ - ﬁ

@ At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

height (cm)
N

@ Choose them based on how much information we would gain from the
decision! (choose attribute that gives the best gain)

Peter Munk
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Learn the Decision Trees with Entropy

@ Simple, greedy, recursive approach, builds up tree node-by-node

@ Start with empty decision tree and complete training set

» Split on the most informative attribute, partitioning dataset
» Recurse on subpartitions

@ Possible termination condition: end if all examples in current
subpartition share the same class

Peter Munk
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Get Back to the Restaurant: Wait or Not

Example Input Attributes Goal

Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est WillWait
X1 Yes| No| No Yes| Some | $$% | No | Yes French| 0-10 | y, = Yes
Xo Yes| No | No | Yes| Full $ No | No Thai | 30-60 | 1y, = No
X3 No | Yes| No | No | Some $ No | No | Burger | 0-10 | y3= Yes
X4 Yes| No | Yes Yes | Full $ Yes | No Thai 10-30 | y4 = Yes
X5 Yes| No| Yes| No | Full | $$8 | No | Yes| French| >60 | ys= No
X No | Yes' No | Yes Some| $% | Yes| Yes | |Italian | 0-10 | yg = Yes
X7 No | Yes| No No | None $ Yes | No | Burger | 0-10 | y; = No
Xg No| No| No | Yes| Some| $3 | VYes | Yes Thai 0-10 | yg = Yes
Xg No | Yes| Yes| No Full $ Yes | No | Burger | >60 | y9= No
X10 Yes | Yes| Yes| Yes| Full | $%38 | No | Yes | Italian | 10-30 | yi0 = No
X11 No| No| No | No | None $ No | No Thai 0-10 | y11 = No
X192 Yes | Yes| Yes| Yes | Full $ No | No | Burger | 30-60 | y12 = Yes

Alternate: whether there is a suitable alternative restaurant nearby.

Bar: whether the restaurant has a comfortable bar area to wait in.

Fri/Sat: true on Fridays and Saturdays.

Hungry: whether we are hungry.

Patrons: how many people are in the restaurant (values are None, Some, and Full).
Price: the restaurant's price range ($, $$, $$%).

Raining: whether it is raining outside.

Reservation: whether we made a reservation.

SRl Bl Bl Bl

Type: the kind of restaurant (French, Italian, Thai or Burger).

Attributes: 10. | | WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Peter Munk
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Get Back to the Restaurant: Wait or Not

Which attribute is better?

Patrons?

it

2 2 4 _ 4
IG(type) =1 — [EH(Y|Fr) == EH(Y|It) T EH(Y‘Thal) = EH(YlBur.)] =0

G(Y)=H(Y) - H(Y|X)

2 4
IG(Patrons) =1 — {— (0,1) + —H(1,0) + 162

12 12
I‘ (Cardiac
Centre
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Get Back to the Restaurant: Wait or Not

Which tree is better?

Patrons?

Full

None

French Burger

[ WaitEstimate? |

>60

Alternate?

No

Yes

| Reservation? |[ Fri/Sat? | [ Alternate? |
No Yes No

Yes

Peter Munk
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Model Selection: Which Tree 1s Better?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)

» See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery”

@ We desire small trees with informative nodes near the root

Peter Munk
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Model Selection: Occam’s Razor

Piled Higher and Deeper by Jorge Cham www.phdcomics.com

CORE PRINCIPLES IN RESEARCH

JORGE CUAM © 2009

OCCAM'S RAZOR OCCAM'S PROFESSOR

"WHEN FACED WITH TWO POSSIBLE “WHEN FACED WITH TWO POSSIBLE WAYS OF
EXPLANATIONS, THE SIMPLER OF DOING SOMETHING, THE MORE COMPLICATED
THE TWO 1S THE ONE MOST ONE IS THE ONE YOUR PROFESSOR WILL
LIKELY TO BE TRUE.” MOST LIKELY ASK You To Do.”

WWW.PHDCOMICS.COM
title: "Core Principles" - originally published 10/12/2009
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Decision Trees: Pitfalls

@ Problems:
» You have exponentially less data at lower levels
» A large tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum
» Mistakes at top-level propagate down tree

@ Handling continuous attributes

» Split based on a threshold, chosen to maximize information gain

@ There are other criteria used to measure the quality of a split, e.g., Gini
index

@ Trees can be pruned in order to make them less complex
@ Decision trees can also be used for regression on real-valued outputs.

Choose splits to minimize squared error, rather than maximize
information gain.

Peter Munk
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Decision Trees v.s. KNN

Advantages of decision trees over k-NN

e Good with discrete attributes
o Kasily deals with missing values (just treat as another value)
@ Robust to scale of inputs; only depends on ordering

@ Good when there are lots of attributes, but only a few are
important

@ Fast at test time

@ More interpretable

Peter Munk
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Decision Trees v.s. KNN

Advantages of k-NN over decision trees

@ Able to handle attributes/features that interact in complex ways

e Can incorporate interesting distance measures, e.g., shape
contexts.

Peter Munk
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Decision Trees 1n Healthcare

Fun Facts:

Decision trees 1s the most widely-adopted method 1n
healthcare.

Class Discussion:

Name one application of decision trees in healthcare
and discuss its pros and cons.

Peter Munk
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Decision Trees in COVID Management

Figure: Flowchart for management of HCWs with exposure to a person with COVID-19

Source: https://www.cdc.gov/ Contact with a person with COVID-
19 in the last 14 days

Yes - Restrict from work e Positive
. - Test for COVID-19

Symptoms of
COVID-19?

Exposure

-— :
Risk Level? NEsmtve

High Risk
Exposure

Low Risk

Exposure

v
Active monitoring; Self-monitoring for 14 days Negative; symptoms
Negative —» | restrict from work for 14 after last exposure; no -— resolved
days after last exposure restriction from work
¥ i Yes
es o
Test for l:evelops [:evelops > - Restrict from work
covip-19 | everor everor - Test for COVID-19
symptoms? symptoms?
| }
Positive Positive
Return v
to work

Peter M
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Decision Trees : Take-Home Messages

1. Decision Trees 1s simple and interpretable.

2. Decision Trees uses information gains to learn
to split the trees.

3. Decision Trees tends to overfit

Peter Munk
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Take a break fred?

Yes

Thirsty?

Care to know more?

Yes No No Yes

Cardipe
Cent Grab a drink | | Meditation

UHNMW/A\ \V/

Meditation Next Slide



Linear Models

@ So far, we have talked about procedures for learning.
» KNN and decision trees.

@ For the remainder of this course, we will take a more modular
approach:

» choose a model describing the relationships between variables of
interest

» define a loss function quantifying how bad the fit to the data is

» choose a regularizer saying how much we prefer different candidate
models (or explanations of data)

» fit the model that minimizes the loss function and satisfy the
constraint /penalty imposed by the regularizer, possibly using an
optimization algorithm

e Mixing and matching these modular components gives us a lot of
new ML methods.

Peter Munk
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Linear Models -- Problem Setup

4.0

3.5
3.0 ° o.

2.51

1.5
1.0

0.54

0.0

Recall that in supervised learning:
@ There is target t € T (also called response, outcome, output, class)
@ There are features x € X (also called inputs and covariates)
@ Objective is to learn a function f : X — 7T such that

t~y= f(z)
based on some data D = {(x®,¢@) for i = 1,2,..., N}.

Peter Munk
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Linear Models -- Problem Setup

@ Model: In linear regression, we use linear functions of the inputs
x = (z1,...,xp) to make predictions y of the target value ¢:

Y Zf(X) = ijzcj +b
J

» g is the prediction

» w is the weights

» b is the bias (or intercept) (do not confuse with the bias-variance
tradeoff in the next lecture)

e w and b together are the parameters

@ We hope that our prediction is close to the target: y ~ t.

Peter Munk
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Linear Models -- Problem Setup

e If we have only 1 feature:
y = wx + b where w,z,b € R.

@ y is linear in x.

e If we have D features:
y =w'x+ b where w,x € RP,
beR

@ y is linear in x.

Xh

Relation between the prediction y and inputs x is linear in both cases.

Peter Munk
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Linear Models -- Problem Setup

We have a dataset D = {(x¥ t®) for i = 1,2,..., N} where,
o x(1) = (xgi),xg), ...,:cg))T e RP are the inputs, e.g., age, height.
o t() € R is the target or response (e.g. income),

o predict t® with a linear function of x(¥:

2.0 4 = Fitted line °
® Data

1.5+

o t0) x4 = wTx() 4

1.0 A1

0.5 1

e Find the “best” line (w,b).

° mi(niril)ize Z,fil Ly, D)

y: response

0.0 4

—0.5 1

—1.0 1

x: features

Peter Munk
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Linear Models -- Problem Setup

e How to quantify the quality of the fit to data?

e A loss function L(y,t) defines how bad it is if, for some example x,
the algorithm predicts y, but the target is actually t.

@ Squared error loss function:

‘C(ya t) - %(y o t)2
@ y —t is the residual, and we want to make its magnitude small

@ The % factor is just to make the calculations convenient.
e Cost function: loss function averaged over all training examples

N

T(w,b) = % > (s - t(z'))z

=1

1 N 5
_ T(8) (1)
= g (W x\V4+b—t )
21 i

@ The terminology is not universal. Some might call “loss” pointwise
loss and the “cost function” the empirical loss or average loss.

Peter Munk
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Linear Models -- Vectorization

@ We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

one feature across
all training examples

x(DT /810 3 0\
X — X(Q)T _ I 6 | =1 5 3) one training
2

example (vector)
x(3)T 5 -2 8

e Computing the predictions for the whole dataset:

Xw + bl = : = : =y

Peter Munk
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Linear Models -- Vectorization

e Computing the squared error cost across the whole dataset:

@ Note that sometimes we may use J =

szW—I—bl

J = —Hy —t[|?

2 2|y — t]|?, without

normalizer. That would correspond to the sum of losses, and not
the average loss. The minimizer does not depend on N.

@ We can also add a column of 1s to the design matrix, combine the
bias and the weights, and conveniently write

1

Then, our predictions reduce to y = Xw.

Peter Munk
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Linear Models -- Vectorization

e Computing the prediction using a for loop:
y=Db
for j in range(M):
y += w[j] * x[]]
@ For-loops in Python are slow, so we vectorize algorithms by
expressing them in terms of vectors and matrices.

T

w = (wy,...,wp) x = (x1,...,2D)

y=wlx+Db

@ This is simpler and much faster:
y = np.dot(w, x) + b

Peter Munk
Cardiac
Centre



Linear Models -- Optimization

@ We defined a cost function. This is what we would like to
minimize.
e Recall from your calculus class: minimum of a smooth function (if

it exists) occurs at a critical point, i.e., point where the derivative
1S zero.

o Multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient).

e We would like to find a point where the gradient is (close to) zero.
How can we do it?

» Sometimes it is possible to directly find the parameters that make
the gradient zero in a closed-form. We call this the direct solution.

» We may also use optimization techniques that iteratively get us
closer to the solution. We will get back to this soon.
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Optimization :
What to do 1f we are first-year undergrad

e Partial derivatives: derivatives of a multivariate function with
respect to one of its arguments.

0 f(z1 4+ h,22) — f(x1,22)

- — 1
8331 (1131,5132) hl—rﬂ) h

e To compute, take the single variable derivatives, pretending the
other arguments are constant.
e Example: partial derivatives of the prediction y

oy 0
= 9T + b
8’(1)]' 8’wj []Z, wj xj N ]

Jy 0
j,

=1
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Optimization :

What to do 1f we are first-year undergrad

@ Chain rule for derivatives:

Cardiac

Centre

oL dL 0Oy
ow dy Ow;

= d F(y_t)2] ¥y

dy |2
:(y_t)xj
2
b 7

N4

ow

0T _ 1\~ () _
o~ 2t

1 . , .
— E (1) _ 4(8)y .(9)
N (y t )xj




Optimization :
What to do 1f we are first-year undergrad

@ The minimum must occur at a point where the partial derivatives
are zero, 1.e.,

oF _

AT

b
o If 0J/0w; # 0, you could reduce the cost by changing w;.

0.

e This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the preliminaries.pdf.

e Optimal weights:
WLS — (XTx)—let

@ Linear regression is one of only a handful of models in this course
that permit direct solution.
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Linear Models — Feature Mapping

@ The relation between the input and output may not be linear.

0 1

@ We can still use linear regression by mapping the input feature to
another space using feature mapping (or basis expansion)
P(x) : RP — R? and treat the mapped feature (in RY) as the
input of a linear regression procedure.

@ Let us see how it works when x € R and we use polynomial feature
mapping.
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Linear Models — Feature Mapping

o
o

0 . 1

Fit the data using a degree-M polynomial function of the form:

M
_ 2 M _ i
Y = wo +wixr + wex” + ... +wyx —g wW;x
i=0

o Here the feature mapping is 9 (z) = [1,z,22,..]".

o We can still use least squares to find w since y = 1(x) 'w is linear
in wo, Wi, ....

@ In general, © can be any function. Another example: ¥ =
[1,sin(27x), cos(2mx), sin(4nx), cos(4dnx), sin(6mx), cos(6mx), - - |
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Linear Models — Feature Mapping

Y = Wo
1 M =0
O

t \

O >—o Jo)
ol 7

O

_1-

0 1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Linear Models — Feature Mapping

Y = wo + wix

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Linear Models — Feature Mapping

2
Y = wo + w1z + war? + waz

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Linear Models — Feature Mapping

y:wo+w1x+w2x2—l—w3x3+...-I-w9339

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Linear Models — Model Selection

Underfitting (M=0): model is too simple — does not fit the data.
Overfitting (M=9): model is too complex — fits perfectly.

—©— Training l

—e— Test 1 ° M=0 1
t t
° o)

0 e 1 0 . 1
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Linear Models — Model Selection

M=0 M=1 M=3 M=9
wy, 0.19 0.82 0.31 0.35 o
w? -1.27 7.99 232.37
w -25.43 -5321.83 !
w 17.37 4856831 | i
w} -231639.30
w 640042.26
we -1061800.52 _,|
w? 1042400.18
w -557682.99 :
wy 125201.43 0 z 1

e As M increases, the magnitude of coefficients gets larger.
e For M =9, the coefficients have become finely tuned to the data.

e Between data points, the function exhibits large oscillations.
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Linear Models — Model Selection

@ The degree of the polynomial M controls the complexity of the
model.

@ The value of M is a hyperparameter for polynomial expansion,
just like k£ in KNN. We can tune it using a validation set.

e Restricting the number of parameters of a model (M here) is a
crude approach to control the complexity of the model.

@ A better solution: keep the number of parameters of the model
large, but enforce “simpler” solutions within the same space of
parameters.

@ This is done through regularization or penalization.

» Regularizer (or penalty): a function that quantifies how much we
prefer one hypothesis vs. another

e ): How?!

Peter Munk
Cardiac
Centre




Linear Models -- Regularization

@ We can encourage the weights to be small by choosing as our regularizer
the ¢ (or L?) penalty.

1
R(w) = Swl = 5 3 w?
J

» Note: To be precise, we are regularizing the squared {5 norm.

@ The regularized cost function makes a tradeoff between fit to the data
and the norm of the weights:

Tres(W) = T (w) + XR(w) = T (w) + 5 >l

@ The basic idea is that “simpler” functions have smaller /5-norm of their
weights w, and we prefer them to functions with larger ¢5-norms.

@ If you fit training data poorly, J is large. If your optimal weights have
high values, R is large.

@ Large A penalizes weight values more.

@ Here, )\ is a hyperparameter that we can tune with a validation set.
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Linear Models -- Regularization

For the least squares problem, we have J(w) = 7% || Xw — t||2.

@ When A\ > 0 (with regularization), regularized cost gives

i - in — 4
w95 = argmin Jieq (w) = argmin o— | Xw — t[|3 + 5| w3
! w 2N 2

=(XTX + ANT) "' XTt

@ The case A = 0 (no regularization) reduces to least squares solution!
@ Q: What happens when A — oo?

@ Note that it is also common to formulate this problem as
argmin,, |Xw — t[|3 + 5||w||3 in which case the solution is

wiidee — (XTX 4 AI)~1XTt.
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Linear Models -- Regularization

@ The /; norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we’d like to encourage.

wa wo ,

L2 regularization L1 regularization

-20 -15 -1.0 -05 00 0.5 1.0 15 2.0 R - wi R - |w1|
i i

— Bishop, Pattern Recognition and Machine Learning
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Optimization :
A more generalized approach

@ Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

e Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.
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Gradient Descent

@ Observe:

» if J/0w; > 0, then increasing w; increases J.
» if 0J/0w; < 0, then increasing w; decreases J.

@ The following update decreases the cost function:

N4
N
—w; — = $ " (y® — @)D
J N Y 9

i=1

@ « is a learning rate. The larger it is, the faster w changes.

» We'll see later how to tune the learning rate, but values are
typically small, e.g. 0.01 or 0.0001
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Gradient Descent

@ Goal: we want to minimize a specific objective function (cost or loss):

o Step 2: Update the parameters:

0=0-avJ(0)

/ giRhegleom/a-visual-explanation-of-gradient-descent-methods-momentum-
u§ Cardiac
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Gradient Descent

e Even for linear regression, where there is a direct solution, we
sometimes need to use GD.
@ Why gradient descent, if we can find the optimum directly?

» GD can be applied to a much broader set of models
» GD can be easier to implement than direct solutions
» For regression in high-dimensional spaces, GD is more efficient than
direct solution
» Linear regression solution: (X”7X)'X”t
» matrix inversion is an O(D?®) algorithm
» each GD update costs O(ND)
» Huge difference if D > 1
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Gradient Descent

e In gradient descent, the learning rate « is a hyperparameter we
need to tune. Here are some things that can go wrong:

D B

« too small: a too large:

« much too large:
slow progress oscillations

instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try
0.1,0.03,0.01,...).
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Gradient Descent

e To diagnose optimization problems, it’s useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

e Warning: it’s very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but
they can’t guarantee convergence.
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Linear Models

Why vectorize?

@ The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!

@ Vectorized code is much faster

» Cut down on Python interpreter overhead
» Use highly optimized linear algebra libraries
» Matrix multiplication is very fast on a Graphics Processing Unit

(GPU)
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A general theme

Linear regression exemplifies recurring themes of this course:
@ choose a model and a loss function

e formulate an optimization problem

@ solve the minimization problem using one of two strategies

» direct solution (set derivatives to zero)
» gradient descent (see appendix)

@ vectorize the algorithm, i.e. represent in terms of linear algebra
@ make a linear model more powerful using features

@ improve the generalization by adding a regularizer
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Linear Model: Take-Home Messages

1. Linear Model 1s simple and interpretable.

2. Regularization on weights can help with
overfitting.

3. Gradient descent 1s a general way to solve
optimization problems in machine learning.

4. Linear model may fail when linearity
assumption does not hold.
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Linear Models in Medicine

LIMMA: Linear models for microarray data

My experience

Nearly 20K citations!
* limma has excellent documentation and

==
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