LMP 1210H: Basic Principles of Machine
Learning in Biomedical Research

Bo Wang
Al Lead Scientist, PMCC, UHN
CIFAR Al Chair, Vector Institute
Assistant Professor, University of Toronto

Recap: What we have learned so far?

Decision Linear

What you can do if you are a doctor now

Evaluation and

recommendation Treatment

KNN,
Decision Trees,
Linear Models,
MLP

What you can do after today:
Ensemble Methods

What are Ensemble Methods?

General Idea:

Training Data

Learnerl Learner2 |« « « « « « « Learner m

Model Combiner —@al ModD

What are Ensemble Methods?

An ensemble of predictors is a set of predictors whose individual
decisions are combined in some way to predict new examples, for
example by (weighted) majority vote.

For the result to be nontrivial, the learned hypotheses must differ
somehow, for example because of

Different algorithms

Different choices of hyperparameters

Trained on different data sets

Trained with different weighting of the training examples

vV v.vy

Ensembles are usually easy to implement. The hard part is deciding
what kind of ensemble you want, based on your goals.

Two major types of ensembles methods:

» Bagging
» Boosting

Why Ensemble Methods

@ Based on one of two basic observations:

1. Variance reduction: if the training sets are completely independent, it
will always help to average an ensemble because this will reduce
variance without affecting bias (e.g., bagging)

> reduce sensitivity to individual data points

2. Bias reduction: for simple models, average of models has much greater
capacity than single model (e.g., hyperplane classifiers, Gaussian
densities).

» Averaging models can reduce bias substantially by increasing capacity,
and control variance by fitting one component at a time (e.g., boosting)

Why Ensemble Methods

@ Ensemble methods more accurate than any individual members if:

» Accurate (better than guessing)
» Diverse (different errors on new examples)

o Why?

@ Independent errors: prob k of N classifiers (independent error rate €) wrong:

P(num errors = k) = (’l\(l) (1 —e)Nk

@ Probability that majority vote wrong: error under distribution where more
than N/2 wrong

Why Ensemble Methods

0.2

0.18 -

0.16 -

0.14

0.12

Probability

0.08 -

0.06 -

0.04 -

0.02

0.1

5

1
Number of classifiers in error

Figure : Example: The probability that exactly K (out of 21) classifiers will make
an error assuming each classifier has an error rate of ¢ = 0.3 and makes its errors
independently of the other classifier. The area under the curve for 11 or more
classifiers being simultaneously wrong is 0.026 (much less than ¢).

[Credit: T. G Dietterich, Ensemble Methods in Machine Learning]

prob that 6 classifiers (out of 11) are wrong: 0.078225
35

prob that 11 classifiers (out of 21) are wrong: 0.026390
02

Why Ensemble Methods

prob that 61 classifiers (out of 121) are wrong: 0.000002
0.08

3 4 5 6
Number of classifiers in error

Figure : € = 0.3: (left)

prob that 6 classifiers (out of 11) are wrong: 0.472948
25

018 007 p
016
006 1
014
01o 005 1
01 004 1
008 003 p
006
002 1
004
0.02 001 4
0 _ 0
0 5 10 15 20 0 20 40 60 80 100 120

Number of classifiers in error

= 11 classifiers, (middle)

prob that 61 classifiers (out of 121) are wrong: 0.412750
008

N = 21, (right) N = 121.

prob that 5001 classifiers (out of 10001) are wrong: 0.022731
8

3 4 5 6
Number of classifiers in error

Number of classifiers in error

7- 4

6- 4

probability

1- 4

' ' ' ' J
0 2000 4000 6000 8000 10000

Number of classifiers in error

Figure : € = 0.49: (left) N = 11, (middle) N = 121, (right) N = 10001.

Why Ensemble Methods

@ Minimize two sets of errors:

1. Variance: error from sensitivity to small fluctuations in the training set
2. Bias: erroneous assumptions in the model

@ Variance-bias decomposition is a way of analyzing the generalization error as
a sum of 3 terms: variance, bias and irreducible error (resulting from the
problem itself)

Variance-Bias Trade-off

] C
6 0000 B
%(r @ & 0

)
00
000
o) o]

High Variance
Low Bias

Low Variance
High Bias

Low Bias

High Bias

Variance-Bias Trade-off

Low Variance High Variance

Why Ensemble Methods

@ Clear demonstration of the power of ensemble methods
@ Original progress prize winner (BellKor) was ensemble of 107 models!

» "Qur experience is that most efforts should be concentrated in deriving
substantially different approaches, rather than refining a simple
technique.”

» "We strongly believe that the success of an ensemble approach
depends on the ability of its various predictors to expose different
complementing aspects of the data. Experience shows that this is very
different than optimizing the accuracy of each individual predictor.”

Ensemble Methods

@ Differ in training strategy, and combination method

» Parallel training with different training sets
1. Bagging (bootstrap aggregation) — train separate models on
overlapping training sets, average their predictions
» Sequential training, iteratively re-weighting training examples so
current classifier focuses on hard examples: boosting

Bootstrap Estimation

Repeatedly draw n samples from D

For each set of samples, estimate a statistic

The bootstrap estimate is the mean of the individual estimates
Used to estimate a statistic (parameter) and its variance
Bagging: bootstrap aggregation (Breiman 1994)

Training data =
= “-@ Sub-sample 1

"A .\ Sub-sample?2

o Sub-sample 3

The 0.632 bootstrap

A particular training data has a probability of 1-1/n of
not being picked

* Thus its probability of ending up in the test data (not

selected) is:
(1 —1) ~e " =0.368
n

* This means the training data will contain approximately
63.2% of the instances

Bagging

Simple idea: generate M bootstrap samples from your original training set.
Train on each one to get y,,, and average them

1 M
V() = 25 > ym(x)
m=1

For regression: average predictions

For classification: average class probabilities (or take the majority vote if
only hard outputs available)

Bagging approximates the Bayesian posterior mean. The more bootstraps
the better, so use as many as you have time for

Each bootstrap sample is drawn with replacement, so each one contains
some duplicates of certain training points and leaves out other training
points completely

Bagging

Reduces overfitting (variance)
Normally uses one type of classifier
Decision trees are popular

Easy to parallelize

Original Tree
x.1<0.205

0 1 0
1 0
0 1
b=3
x.2<0.285
1 0
1 o

1 1

Bagging Decision Trees

b=1
x.1<0.555

o

J
o
-

b=4
x.3 <0.985

T

0 1

b=2
x2 <0.205

1

1

0 1
b=5
x4<-1.38
0
1
1 0

0

Hastie et al.,”The Elements of Statistical Learning: Data Mining, Inference, and Prediction”, Springer (2009)

Bagging Decision Trees: Pitfalls

Suppose that there is one very strong predictor in
the data set, along with a number of other
moderately strong predictors.

Then all bagged trees will select the strong predictor
at the top of the tree and therefore all trees will look
similar.

In other words: Correlated Trees!

How do we avoid this?

Bagging Decision Trees: Pitfalls

Remember we want i.i.d such as the bias to be the
same and variance to be less?

Other ideas?

What if we consider only a subset of the predictors
at each split?

We will still get correlated trees unless
we randomly select the subset !

R L

o AT ASREY

e e -
TS —— =y
— e _

ST st

Random Forests

For b =1 to B:
(a) Draw a bootstrap sample Zx of size N from the training data.

(b) Grow a random-forest tree to the bootstrapped data, by
recursively repeating the following steps for each terminal node of the
tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

Output: the ensemble of trees.

To make a prediction at a new point x we do:
For regression: average the results

For classification: majority vote

Tuning Random Forests

The inventors make the following recommendations:

* For classification, the default value for m is\/ﬁ and the minimum
node size is one.

* For regression, the default value for m is p/3 and the minimum
node size is five.

In practice the best values for these parameters will depend on the
problem, and they should be treated as tuning parameters.

Random Forests : Summary

Advantages

* Random forest algorithm is unbiased as there are multiple trees and each tree is trained on a subset of data.

¢ Random Forest algorithm is very stable. Introducing a new data in the dataset does not affect much as the new data impacts
one tree and is pretty hard to impact all the trees.

¢ The random forest algorithm works well when you have both categorical and numerical features.

¢ \Xith missing values in the dataset, the random forest algorithm performs very well.

Disadvantages

* A major disadvantage of random forests lies in their complexity. More computational resources are required and also results in

the large number of decision trees joined together.

¢ Due to their complexity, training time is more compared to other algorithms.

Random Forests: Pitfalls

When the number of variables is large, but the fraction of relevant
variables”is small, random forests are likely to perform poorly when
m is sma

Why?

Because:

At each split the chance can be small that the relevant variables will
be selected

For example, with 3 relevant and 100 not so relevant variables the
probability of any of the relevant variables being selected at any split
is ~0.25

FiINAL CLASSIFIER

Another Way of Ensemble: Boosting

Sequential

G(x) = sign [Zf\n[:l Oéme(f)}

e

T

Training Sample JEB

[}

éﬂf(x)

Each weak classifier is trained from a
weighted sample of the training data

Boosting: Weighted Sample

The misclassification rate + SV T[R(z(™) # t™] weights each training
example equally.

Key idea: We can learn a classifier using different costs (aka weights) for
examples.

» Classifier “tries harder” on examples with higher cost

Change cost function:

N N
T; %H[h(x(")) #£t™] becomes ; w™I[R(z(™) £ t(™)]

Usually require each w(™ > 0 and ij:l w™ =1

Boosting: Weak Learners

@ (Informal) Weak learner is a learning algorithm that outputs a hypothesis
(i.e., a classifier) that performs slightly better than chance, e.g., it
predicts the correct label with probability 0.51 in binary label case.

» It gets slightly less than 0.5 error rate (the worst case is 0.5)

@ We are interested in weak learners that are computationally efficient.

» Decision trees
» Even simpler: Decision Stump: A decision tree with a single split

[Formal definition of weak learnability has quantifiers such as “for any distribution over data” and the
requirement that its guarantee holds only probabilistically.]

Boosting: Weak Learners

These weak classifiers, which are decision stumps, consist of the set of
horizontal and vertical half spaces.

Vertical half spaces

Horizontal half spaces

+
= +_

AdaBoost: Adaptive Boosting

@ Boosting: Train classifiers sequentially, each time assigning higher weight
to training data points that were previously misclassified.

@ Key steps of AdaBoost:

1. At each iteration we re-weight the training samples by assigning
larger weights to samples (i.e., data points) that were classified
incorrectly.

2. We train a new weak classifier based on the re-weighted samples.

3. We add this weak classifier to the ensemble of weak classifiers. This
ensemble is our new classifier.

4. We repeat the process many times.

@ The weak learner needs to minimize weighted error.

@ AdaBoost reduces bias by making each classifier focus on previous
mistakes.

AdaBoost: Adaptive Boosting

@ Input: Data Dy, weak classifier WeakLearn (a classification procedure that
returns a classifier h, e.g., best decision stump, from a set of classifiers H, e.g.,
all possible decision stumps), number of iterations 7'

@ Output: Classifier H(x)

SYIRT . . 1 _
@ Initialize sample weights: w(™ = 5 forn=1,...,N

@ Fort=1,...,T Don’t Panic!
» Fit a classifier to data using weighted samples See next!

(ht + WeakLearn(Dn,w)), e.g.,

N
h: < argmin Z wMI{R(x™) £ t™}
hen

Sa_ 1wk (x (M) £ (M)}
=N v

> Compute classifier coefficient o = 1 log ? ot (€(0,00))

» Update data weights

w™ — w™ exp (—att(")ht(x(n))) [E w™ exp (Zatﬂ{ht(x(")) + ¢ })]

@ Return H(x) = sign (Ez;l athy (x))

» Compute weighted error err; =

AdaBoost: Adaptive Boosting

T
| e ~hy H(z) = sign (Z ahy (@) Still Panic?
. =t See next!
w; — Ww; exp (2at1[{ht (x®) £t
Re-weightsd
eTS‘anelpglese ________ ~hs

1 (1— errt)
o = —log
2 err;

1

_ vazl w;I{ hy (x(i) £ t(i)}
Zﬁ\f:l Wy

Boosting: A simple example

@ Training data

[Slide credit: Verma & Thrun]

Boosting: A simple example

@ Round 1
& -
D @ +
+| = _ _
L — —
€1=0.30
ocl=0.42

[Slide credit: Verma & Thrun]

Boosting: A simple example

@ Round 2

[Slide credit: Verma & Thrun]

€=0.21
0,=0.65

Boosting: A simple example

@ Round 3

€3=0.14
03=0.92

[Slide credit: Verma & Thrun]

Boosting: A simple example

@ Final classifier

Sy
Il

sign| 0.42 +0.92

final

Boosting: A simple example

2
o IOC)m:1 2fs I °, m=2 21 m =3
o] OO@% ° qO‘ " . o
0 o o 9 , &l "O s 5 ')
e % o o1 r & 1 c
(o) ®o * e T
o X - " g i)
-2 o7To) | ° _2'—__—"0 . = == =3
D | o .
=1 0 1 2 -1 0 1 2 | 0 1 2
2
2 , m=6 2 m =10 | %=1
10 5 | o
° [
B[= = e I 04— 0 3 3 0 — Cg
. ° . : ® .
g | [TTE vy S RY¥o)
‘o "0 s O ;
-2 .,) T . ° g °:
- 0 1 2 1 0 1 2 =L 0 1 2

@ Each figure shows the number m of base learners trained so far, the decision
of the most recent learner (dashed black), and the boundary of the ensemble

(green)

AdaBoost: Generalization

AdaBoost’s training error (loss) converges to zero. What about the test
error of H?

As we add more weak classifiers, the overall classifier H becomes more
“complex”.

We expect more complex classifiers overfit.

If one runs AdaBoost long enough, it can in fact overfit.

30

o5 _j\ |

20 | \ test ~,',,/""""M"m‘,
5 T
E15
Q

10 | train

5 L

0 L i

1 10 100 1000

rounds

Other Boosting:
Gradient Boosting, XGBoost

Gradient Boosting uses regression trees as weak
learners.

Gradient Boosting uses additive losses and gradient
descent to solve the optimization problem.

XGBoost is a regularized version of gradient boosting
with more efficient implementation.

XGBoost, by far, is the most widely used boosting
algorithm.

Boost: Summary

@ Boosting reduces bias by generating an ensemble of weak classifiers.
@ Each classifier is trained to reduce errors of previous ensemble.

@ It is quite resilient to overfitting, though it can overfit.

Ensemble Methods: Summary

@ Ensembles combine classifiers to improve performance

@ Boosting

» Reduces bias

» Increases variance (large ensemble can cause overfitting)
» Sequential

» High dependency between ensemble elements

@ Bagging

» Reduces variance (large ensemble can’t cause overfitting)
» Bias is not changed (much)

» Parallel

» Want to minimize correlation between ensemble elements.

Ensemble Methods: Summary

Boosting: Sequential tree growing
with weighted samples

Single decision tree iteration: All samples |

Decision
Tree 1
Decision
Tree

@@@/
>
g@ g@?g@ Q@

Decision Decision Decision i

| Bagging: Parallel free growing with subsamples |

Source: https://towardsdatascience.com/the-ultimate-guide-to-adaboost-random-forests-and-xgboost-7f9327061c4f

Ensemble Methods: Summary

- Handles Overfitting
P Bagging Random Forest : Reduce Variance
N~ Independent Classifiers
Ensembling
- Can Overfit
Boosting Adaboost . Reduce bias & variance

- Sequential Classifiers

Which type of model would you prefer if
you are a patient?

